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Abstract

A registration of images deals with finding geometrical warp parameters between different images that
contain some common intrinsic details. The registration plays one of the most important roles in the
super-resolution reconstruction since the latter deals with recovery of one high-resolution image from
warped, blurred and decimated replicas of it. Several algorithms were already proposed for the general
solution of the image registration. In this paper we concentrate on a special case, where warps are pure
translations. We use previous basic ideas and results to develop a new registration technique, which uses
multiple reference frames, works with hardly aliased images and brings high subpixel precisions. This
technique is intended to increase significantly the resolution-refining factor in super-resolution
reconstruction problems.

Introduction

As a consequence to contemporary growing demand to higher precision of image interpolation techniques,
super-resolution reconstruction becomes apparently better investigated. A common sense of the
interpolation means compensating missing data between fixed lattice nodes i.e. between the pixels, based
on the existing image pixel values. Contrarily, super-resolution reconstruction means compensating this
data by using additional source — such as another differently captured image or a set of » images. Only
aliased images could be used for super resolution, because images, sampled according to Nyquist criteria,
are completely self-consistent. Thus, for example, having a video sequence of 15 frames with a given
resolution, one can construct a single frame with better resolution say as twice.

A typical super resolution reconstruction algorithm consists of two topics:

1) Registration between given images
2) Super-resolution restoration

Many approaches are developed regarding the second topic. ML, MAP & POCS based de-blurring
techniques are used in the recent works [3,4,5,6]. LMS algorithm using frequency plane representation is
described in [1]. Back projection algorithm is in [2]. However there are few advances regarding the
registration of aliased low-resolution images. On the other hand, super-resolution registration precision is
critical, because the estimation of the warp parameters is performed over low-resolution grid, and each
registration error is magnified by resolution refining factor over the high-resolution grid. The situation is
worsened further by strongly aliased nature of the measured data. Some of works [2,4,5] apply regular
registration techniques to the super-resolution problem, which uses single reference low-resolution frame.
This approach is taken as a generic registration solution and doesn’t exploit additional super-resolution
related features. Many other works assume apriory knowledge of the warp parameters without estimating
them. As a result, the best practical resolution improvement is 2-3 times in each axis.

The new registration technique, presented in this work, enables to obtain resolution improvement by 5
—10 times in each axis. This technique is based on multiple reference frames, high-resolution
autocorrelation function estimation and takes into consideration also the strong aliasing nature of the
measured images. The primary accent was applied to the de-aliasing process, while other restoration
aspects are left to the future expansion. During current research, we used synthetically generated data by
random continuous displacements, with a weak additive gaussian white noise & without blur.

The organization of the rest paper as follows:

Section 1 is a description of the general model of the image generation process. Section 2 deals with
special case reductions of the general model, used for the algorithm development. Section 3 presents basic
problems of the single reference frame registration. Section 4 proposes the new registration algorithm.
Section 5 presents simulative results.

*
Feasibly recoverable decimation of the images



1 Imaging process — general description

This section presents the model of digital
image acquisition. Let’s denote [;..[, to be the
measured images ordered as column vectors.
Then the imaging process for measuring an
image I, can be represented as:

L :Dk'Hk'Gk'F +N.,k=1.n (1)

The vector I' is unknown high resolution
image. Matrix Gy is spatial warp operation on I’
during the process of obtaining the image /.
The matrix H, represents blurring operation,
originated from integration on finite size
detectors. The matrix D, , which is not square,
stands for decimation operation to obtain I,
which occurs due to a finite distance between
detectors. For dealing with super resolution
reconstruction, these distances have to be larger,
than the desirable high-resolution pixel size. The
vector N, represents the gaussian uncorrelated
noise, added to the low-resolution image during
sampling process.

2 Special case simplifications

In this section we are going to impose some
modifications to the model of the imaging
process. For most cases, H; and D, are equal for
all k = 1..n. We can treat H, as LSI operator, due
to uniformly symmetrical structure of the
majority of CCD’s. As long as in our case, Gy
represents only translations, it is a linear space
invariant operator (LSI), which commutes’ with
other LSI operator such as H;. So we can
rephrase the expression (1) as:

L :Dk'Gk'Hk'F + N, (2)

Since the blurring and decimation are
invariant between images, we can denote:

H=H; D=D; (3)
The noise isn’t correlated neither spatially,
nor between measured images I;..[, so the

model can be written as:

I, =D-Gy(HF + N") (4

' The case of rotations could also be treated, but then G is not LSI.
Therefore, working with cyclically symmetrical kernel of blurring
in Hy enables us to interchange H; and Gy in this case too.

Where N is some noise image, added to
original high-resolution source and obeying
conditions given for N, Let’s denote

I"=H-I' + N", then:
Ik :D'Gk’lh (5)

Our goal now is to restore [, — the blurred and
noised version of the high-resolution image.
Then the whole problem reduces to dealiasing
process, leaving the rest restoration of I from /"
as a general image restoration topic, which can
be treated by other classical methods, such as
ML, MAP, LMS, POC used in the works
referenced above.

The restoration of 7" , given the set of 1.1,
images and G,.G,, as known data, is
straightforward. The simplest heuristic way is to
place the images 1,.l, , inversely, on high-
resolution grid.

The resulting high-resolution image Ih comes
out to be over non-uniform grid, because of
irregularity of the spatial transformations
G1..Gn. Therefore, uniform interpolation over
non-uniform grid could be used, for uniform
representation of the result.

3 Super-resolution registration problems

However, G,..G, are unknown. The goal of
registration is to estimate the spatial
transformations from the given set of measured
low-resolution images /; .. .

3.1 Conventional method
The most common way to estimate
geometrical warp is defined as following:

1. One image from the set /,..1, is chosen to be
the reference frame. Let’s denote it /..

2. For each of the remained n-1 images, lets say
Iy, we find a spatial warp G, , the inverse of
which, produces the best match between the
image I and the reference frame /,.

3. We convert the low-resolution grid related
G,..G, warps, to the corresponding G...G,,
defined over high-resolution grid (in case of
displacements only, the converting is simply
multiplication of each axis displacement
parameter, by a corresponding decimation
factor).



Figure 1 — small translations and decimation

Let’s call the method of single reference
frame described above, as conventional method.
Conventional method brings relatively satisfying
results, when working with low decimations - of
order smaller, than 3. That means, that the best
resolution improvement in ideal conditions (no
blur, no noise) could be 3 times in each axis.

3.2 Insight to Conventional Method (CM)

limitations

o Why cannot we go further in decimation?

o Why cannot we improve the resolution 10
times in each axis, having big enough
database of measured images?
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Figure 2 — an autocorrelation function of a typical high-
resolution image
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Figure 3 — heavy decimation process

Working with high resolution grid demands
very high precision of registration between low
resolution measured images /; .. I;. So the super-

resolution demands the registration error in low-
: 1 :
resolution scale to be of order of E, where d is

the decimation factor.

Working with heavily aliased images,
introduces  additional difficulties to the
registration problem, as follows.

General images have strong correlation only
in a small neighborhood of points. Let’s consider
an autocorrelation function of the high-
resolution image. For most images, this function
has a shape close to a gaussian, witho ~ 3..5
pixels (see Figure 2). If we decimate such image
with step d=2-0 for example, the
autocorrelation function of the resulting images
will be much narrower (o < 1 pixel). That means
there is almost no correlation between two
neighboring points in that image.

Moreover, consider two images that were
sampled as sown in Figure 3. The first image
was sampled with decimated factor d. The
second was sampled with the same decimation
factor, but at a slightly different position. Let’s
denote the displacement value by x. So for
images, where x <0 <d & d —x > o, it easily
seen, that the maximum cross-correlation value
that can be attained in the registration process is
0.5! In another words, there is no good optimal
matching point between two heavily decimated
images. And the conventional method has very
low confidence value® in its results, which makes
it unstable.

The visual sense of the described effect is
shown in Figure 4. Six images were sampled at
different positions with x as described above.
You can see that they are locally different. And
it is very difficult (if possible at all) to talk about
subpixel registration precisions.

*
Confidence value refers to the correlation value at the best
matching position
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Figure 4 — small translations & decimation
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Figure 5 — deceptive behavior of cross-correlation
between two heavily decimated images

Figure 5 shows deceptive behavior of cross-
correlation of the first two frames from Figure 4.
The maximum of the cross-correlation
(matching) occurs at the wrong position. The
graph is shown in high-resolution scale. MSE
related algorithms behave the same way.

3.3 Conclusions and proposals

According to said above, we can roughly
define decimation factor limit per each high-
resolution image above which, the conventional
registration method fails. Roughly it is about 2-c.
This makes all neighbor points of the resulting
image uncorrelated. Actually, due to other image
distortions like blur and noise, this factor is even
smaller.

However, the proposed algorithm shows, that
there is still possibility to register such heavily
aliased images. The main idea is instead of using
single reference low-resolution frame, to use the
whole set of measured images, combined in one,
iteratively pre-estimated high-resolution
reference frame.

4 Registration algorithm
4.1 Assumptions

The proposed algorithm, given below,
assumes some prior knowledge about measured
images relationship, as following:

1. We know the autocorrelation function of the
I" (high-resolution blurred image). From the
first sight this assumption seems to make no
sense, since I is unknown. However, in
appendix A, with aid of assumption 4, it is
shown how we can estimate the mentioned
autocorrelation function, using the given
I]..In.

2. The autocorrelation function of 1, is
cyclically symmetrical.

3. The autocorrelation function decreases
monotonically in the region, close to origin.

4. The cross-correlation between two high-
resolution images approximately equals to

Cross correlation between their
corresponding decimated replicas.
So if

1,=G/I'; I,”’=DG,TI'
[2:G2-Ih N 12’ :D'Gg'lh, then

corr(l, ) = corr(l;’I;’)

The validity of this assumption is shown in
appendix B. The meaning of such statement
is that decimation doesn’t produce primary
impact on the correlation value, whereas the
correlation is strongly influenced by the
displacement value of the original high-
resolution image.

5. Let’s denote dx and dy to be the
displacement value in x and y directions
respectively. The distribution of the
displacements is expected to be as
following:

dv~Ul-di;d] ; dy-Ul-d,:d,],
where d, and d, are decimation factors in
each axis

Actually, the displacements could be
distributed over larger limits, but then, the
conventional method is capable to
compensate them by bringing all the images
to the common frame with the it’s precision
of about + d .

As a result of these assumptions, we can
significantly reduce the region of registration



search and avoid many deceptive extreme points.
Thus, given two measured images — say /; and /1,
we can approximately determine the distance
between them in the high-resolution scale. For
example, if the autocorrelation function of high-
resolution image I” is as shown in Figure 6 and

corr(l;, 1) = 0.5, then the distance between /; and
L is 2 pixels in some direction, i.e.

Jdx® +dy® =2. So the region of possible

translations between these two images is reduced
to a circle with radius of 2. It is advisable to add
some safety margins to the circle and to work
with ring of finite width, but to be careful -
enlarging the region of search raises chances of
undesirable artifacts, as shown in Figure 5.
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4.2 Registration algorithm — tools
definition

In this section we show the proposed
algorithm for registration process, which uses
single, iteratively estimated high-resolution
reference frame.

Let’s start from a simulative experiment.
Suppose we have some low-resolution image /.
And let us produce four additional images by
translating /, one pixel position in each of four
directions respectively. Let’s call them 7, ,..7, ..
Each such pixel position corresponds to a
distance of d in the high resolution. If we pick up
another frame say /I,, so each of these four
images gives us a separate circle. The radius of
such circle is defined by a cross-correlation
between corresponding [/;;, i=1.4 and D,

whereas the center - by the corresponding
translation vector. The intersection point of all of
these circles is the desired registration parameter
between the I, and 7,. Figure 8 shows these
circles, when I, = I;. As expected, we get the
intersection at the origin, since there is no
movement between the /; and itself. Figure 9
shows the situation, when I; # .
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4.3 Algorithm steps

1. Given a set of measured low-resolution
images 1,..1,, we choose one, say I, to be the
reference frame for the first step.

e For each of the rest n-1 images, say /,, we
find intersection points of 5 circles - 4 as
described in the experiment above and 1 with
center at the origin. Each intersection point is
a candidate to be the displacement G, of I,
respectively to [, The coordinates are
converted to the high-resolution scale.

e We choose one point with best correlation”,
say Gy, which corresponds to /.

e Among all such n-1 results (as the number of
remained frames), we choose one — say I,

Since the coordinates of examined intersection points are
fractional, we use interpolation of 7, for getting the correlations at
those points.



with G,, which is the best according to its
correlation at that position.

2. Now we have two reference images — /; and
L.

e For each of the rest n-2 images, we have now
10 circles, produced by the both reference
frames. We find all intersection points of
these circles.

e We choose one point with best correlation
parameter. Although we have two reference
frames, for getting correlation value, we use
only one of them alone, chosen randomly, in
order to avoid divergence of the algorithm
due to consistent erroneous feedback.”

e Among n-2 results we choose the best one, as
in previous step.

3. Repeat step 2 with correct number of
reference frames, until all displacements for
all images are found.

As more circles created in the consequent steps,
many more points we have to examine.
Therefore, clusterizing is used for reducing the
number of candidate points. Only the centers of
clusters are examined. Small clusters are
ignored. Figure 10 shows typical clusterizing
results. This figure shows also the displacement
found versus the originally generated
displacement for a typical frame. It is possible to
choose more than one frame with its
displacement per step if their matching quality is
the same or close enough.
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Figure 10 - clusterization of the intersection points

: Using all reference frames for calculating correlation parameters
is problematic, because the errors would affect the results
consistently from frame to frame, which produces the parasitic
feedback.

4.4 The final stage of algorithm
In the previous steps, the resulting

displacement vectors G;..G, for each of
measured images [;..[,, were determined
pointwise. At this stage, we allow them to move
in some rectangular environment, but over the
whole combined pre-estimated high-resolution
image I". Indeed, once we have estimated all
displacements for /,..1,, we can build I" over non-
uniform grid. Now, for each of the /,..1, we
perform next steps:

e Let’s say the mentioned image is [, We
construct /" using contribution of /,..[,; and
Ik+1..ln.

e For [, we refine its displacement vector Gy
within a small rectangle with side length

d . . . .
sz around its previously estimated version.

The match criterion is correlation of 7, at
position G, over high-resolution image I
For each pixel in [, we find corresponding
pixel in /' by interpolation over its non-
uniform grid. Note: [, is low-resolution
image, and the correlation is performed in
low resolution.

e This new G, will be counted in constructing
I for refining the next Gy, ;.

e The order of choosing Gy is according to
matching criteria of that frame in the high-
resolution image. Bad matching frames are
refined first.

This process will run until low rate of refining

corrections is reached. As was experimentally

observed, steps 1-3 do the most of the work,
whereas the final stage improves only extremely

erroneous results for the G,..G,,.

5 Results

Figures 11, 12 show the results of text and
Lena images respectively. The text image source
(a) was decimated 1:6. And 36 uniformly
displaced images, some of them are shown in
(b), were used to restore the original image. You
can see the ideal restoration (d), which was
obtained with the exact displacements. It is the
best theoretically obtainable result. Due to
random displacements and interpolations, this
result differs from the source image. In (e) and
(f) you can see the conventional method and the
proposed algorithm results respectively. It
should be noticed, that the proposed algorithm



brings significantly improved results, than
conventional method, only in case of heavy
aliasing. The decimation factor for such aliasing

is defined by the image nature. Thus, in the Text
image, more improvement achieved, than in
Lena with the same decimation factor.
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Appendix A

Estimation of high-resolution autocorrelation
function, using measured images

Assumptions:
e All displacements G,..G, are distributed
uniformly on the decimation rectangle.
Let Gy to be described by (dx; ,dyy), and
dx~Ul-d;d]  dyy~U[-d,d]
e The desired autocorrelation function is

monotonic close enough to the origin - see
Figure 13. Let’s call it “reliable region”.
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Figure 13 — the unknown autocorrelation function

Estimation steps:

Let’s denote r = +/dx; +dy;

It’s easy to show, that

T-r
2

2.
il -(2~7z—8-arccos£d)j d<r<d-\2

4.4* r

r<d

f(r)=

f{r) — density function of random variable .

To estimate autocorrelation function we need
to:

e choose one low resolution image — say I; to
be the reference

e find correlation values between I, and all
other images

e to distribute results according to f(r), given
above

e to interpolate the autocorrelation by a
polynomial or any other smooth function
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Figure 14 — density f(r)

The results of this process are shown in Figures
15 and 16. Only the region, which is close to the
origin, is important. It is reliable region, were the
correlation values are high enough to work with
them and also the function behaves
monotonically.
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Figure 16 — autocorrelation estimation of Text image



Appendix B

Approximation of cross correlation between
two high-resolution images by their low-
resolution decimated replicas.

In this appendix we justify the following
statement:

Let I,,;, I;; be two images of the same size and
I;, I; are their corresponding decimated
replicas so that:

I,=D-I); ; I;=D-I;, ,then

corr(Iy,Iyz) = corr(Iy,l)

where D is a decimation operator, applied on
the original images and “corr(x,y)” is cross-
correlation between two corresponding
images x & y, defined as:

> (x)-x)- i) - ¥)
N - \/V21r(x) -var(y) @

corr(x,y) =

;,;- is the mean of x and y pixel values
respectively.

Figure 1 spatially show the decimation process of
the 1,; and I,,. If not many small intrinsic image
details are destroyed by the decimation, it is fair
to assume, that:

Iy~1, ; I,~1,and

var(l,,) =~ var(l,,) ; var(f,,) ~ var(l,,)
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So, that:

S @ —Iy M (d-i)-1,,)

cor(l,.1,)~ |=

N
o Jvar(,))-var(l,,)
2)

, where d is some decimation factor.

The difference between corr(l),1;) and
corr(l,,1,;) is that the former includes a sum of
less items, chosen with period of d, whereas the
latter corresponds to the sum of all the items.
Because of independence of the spatial choice of
the items on their values, it is fairly could be
assumed, that the result of the cross-correlation
value isn’t changed by reducing the number of
samples.

The considerations, shown above do not
represent a proof for the statement, but only
speculations ~ that  could  justify  the
approximation. This approximation was found
valid in various simulations conducted on
various images and decimations of d=5..10
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