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Abstract - H.264/AVC is the newest video coding standard developed by the joint effort of ITU-T VCEG and 
ISO/IEC MPEG. This standard achieves a significant improvement in coding efficiency relative to former 
standards at the cost of increased complexity, thus gaining a lot of attention by industry, but creating a big 
challenge for efficient hardware and software implementations. In this paper three implementations of an 
H.264/AVC baseline decoder using different leading high-end Digitals Signal Processors are described. The 
implementation has been done, using the JVT reference software, by undergraduate seniors under the 
supervision of the authors, in the course of one year. This study is beneficial in several aspects. First, the 
complexity of an H.264/AVC decoder is measured and analyzed using “real world” hardware and software. 
Second, the difficulties that programmers could face when implementing an H.264/AVC decoder scheme are 
examined. And lastly, different Digital Signal Processors are examined under a very demanding algorithm.  
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1. INTRODUCTION 
 
 H.264/MPEG-4 AVC [1] is the latest 
international video coding standard. VLSI 
technology has advanced significantly since the 
development of previous standards (e.g. MPEG1/2, 
H.261/3), resulting in a significant reduction in the 
implementation cost of some coding tools that were 
excluded from those standards. H.264/AVC includes 
some of these tools as well as a variety of 
innovations. Hence, its complexity is higher, 
especially on the encoder side. Even on the decoder 
side, its complexity is estimated to be two to three 
times higher than an H.263 decoder, for the same 
bitrate [5]. DSPs (Digital Signal Processors) are 
specialized microprocessors designed to efficiently 
perform digital signal processing algorithms. They 
are efficient in terms of size, power consumption 
and price. In addition, DSPs offer great flexibility 
since they can be easily programmed for different 
applications. This cost-efficiency makes DSP 
programming an important and challenging subject. 
Therefore, it is useful to examine H.264/AVC 
performance on various DSP platforms. 
 Several studies examined H.264/AVC decoder 
performance on a GPP (General Purpose Processor). 
Fig. 1 shows a time breakdown of a non-optimized 
decoder as reported in [4]-[7]. These profiling 
results were all measured for GPPs with different 
implementations, test sequences, and coding 
parameters. In spite of this fact, examining Fig. 1 is 
interesting, in the sense of getting a rough estimate 
of the expected results using a specific 
configuration, and acknowledging the fact that great 

Fig. 1. Time breakdown of an H.264/AVC decoder 
on General Purpose Processors as reported in [4]-[7] 
 
variability in running time is possible depending on 
different parameters. 
 In [5] a way is given to compute a lower time- 
complexity bound of an H.264/AVC decoder for a 
given hardware. This lower bound provides an 
insight on the decoder complexity, but could be two 
to six times lower than experimental results, even for 
a highly optimized decoder. Therefore, it is much 
more practical to estimate H.264/AVC time-
complexity by establishing "real life" experimental 
benchmarks on specific hardware platforms. 
 This paper describes a comparative work that 
examines H.264/AVC decoder performance on three 
different DSPs. This work has been performed in our 
lab by three senior undergraduate student groups, 
under the supervision of the authors. A baseline 
profile version (after removing some irrelevant 
code) of the reference software from JVT is used 
[3]. The purpose of this paper is to examine the 
special difficulties that programmers could face 
when using an H.264/AVC reference software 
decoder for DSP implementation, and suggest 



optional solutions. Moreover, it enables a 
comparison between three different modern DSP 
architectures.  
 It should be noted that the work has been 
performed during the students’ studies and so is 
limited in time and scope. This affected the amount 
of optimizations performed on the code but does not 
prevent us from gaining some important insights. 
 The paper is organized as follows. Section 2 
gives a brief overview of the H.264/AVC video 
coding standard. Section 3 discusses modern DSPs 
and briefly describes the three DSPs under 
examination. Results, as well as some insights 
gained during the work, are given in section 4. 
Finally, section 5 concludes our work. 
 
 
2. H.264/AVC OVERVIEW 
 
 An overview of H.264/AVC and its development 
stages can be found in [2], as well as in other 
sources. In this section, the main innovations of 
H.264/AVC in comparison to previous standards, 
which affect its complexity, are briefly described. 
• Transform and quantization: Instead of the 
traditional 8x8 DCT, which is a real transform and 
hence needs real number arithmetic, H.264/AVC 
uses an integer approximation to the DCT with a 
smaller block size of 4x4 pixels. In addition, no 
quantization tables are needed and quantization is 
done according to a logarithmically-controlled 
quantization parameter. 
• Inter multi-frame prediction: In previous video 
coding standards, motion compensation was 
performed using 16x16 macroblocks only. 
H.264/AVC allows also the use of smaller block 
sizes – 16x8, 8x16, 8x8, 4x8, 8x4 and 4x4.  In 
addition, motion compensation is done in ¼-pixel 
accuracy and can be based on up to five reference 
frames. 
• Intra prediction: Performed in the spatial domain, 
by referring to neighboring pixels of previously-
coded blocks that are to the left and/or above the 
block to be predicted. Two block sizes for intra 
prediction are supported – 4x4 with nine prediction 
modes, and 16x16 with four prediction modes. 
• Deblocking filter: A well known problem of block-
based coding is the production of visible block 
artifacts due to block edge discontinuities, especially 
at low bit rates. H.264/AVC defines an adaptive in-
loop deblocking filter which reduces blockiness 
while retaining the sharpness of the edges in the 
scene. 
 All aforementioned changes affect both the 
encoder and decoder’s complexity. Except for the 
new transform and quantization scheme that lower 
the complexity, all changes raise the time and space 
complexity. Other new features are not mentioned 
here because this paper deals with the baseline 
profile only. 

3. DSP OVERVIEW 
 
 Since DSPs are tailored for executing signal 
processing algorithms with very limited resources, 
their internal architecture is different from the one 
found in GPPs. Some basic distinctions are the use 
of fixed-point arithmetic instead of floating-point 
arithmetic and the use of a flavor of Harvard 
architecture instead of Von Neumann architecture. 
Other characteristics of DSP architectures are, e.g., 
specialized multiply-accumulate units and zero-
overhead loops. Recently, DSP architectures have 
undergone fundamental changes so different 
architectures are available.  
 For this study, three leading high-end DSPs with 
different architectures have been chosen: 
TMS320DM642 from Texas Instruments, MSC8101 
StarCore from Freescale (formerly Motorola SPS) 
and ADSP-BF533 Blackfin from Analog Devices. 
All three DSPs are targeted towards low cost real-
time video codec implementation as one of their 
main markets. The StarCore is also highly targeted 
to communication applications. 
 Table 1 shows some properties of these three 
DSPs. In this table, BDTI benchmark is a speed 
benchmark on a relative linear scale interpolated 
from the BDTImark2000 results given in [8]1. More 
information about the different processors could be 
found in the relevant company websites. 
 

Table 1. DSPs under examination 

 There are many factors that one has to take into 
account when examining different DSPs. For 
example: performance (e.g., speed, memory 
signature size), cost, size, power consumption, ease 
of development and integration. In this paper we are 
by no means trying to compare all these factors or to 
recommend a specific DSP. The only aspects that 
will be considered from now on are performance in 
terms of speed, and the ease of development. 
 
 
4. IMPLEMENTATIONS AND RESULS 
 
 Adapting the decoder to the different DSPs 
consisted of two phases. The first phase involved 
making the code work on the DSP and replacing file 

                                                 
1 The results given in [8] are for the same processors used in this 
study but with different clock speeds, so the results were scaled 
accordingly. 

 DM642 StarCore Blackfin 
Num. Rep. Fixed Pt. Fixed Pt. Fixed Pt.  
Data Width 8/16 bits 16 bits 16 bits 
Instr. Width 32 bits 16 bits 16/32 bits 
Clock Speed 600 MHz 300 MHz 600 MHz 
Intern. Mem. 288 KB 512 KB 148 KB 
BDTI Bench. 5480 2700 3350 



access by external memory access, while the second 
phase involved profiling and optimizing the code. 
 The baseline profile decoder used takes 
approximately 13,000 lines of code. Even though 
modern development environments for DSPs are 
able to compile ANSI C code, adapting such a long 
and complex code to such an environment is not an 
easy task. Things usually break down because of 
limited resources and because of incompatibilities 
and instabilities in the DSP development 
environment. 
 In this paragraph we’ll give two examples (out of 
many) of bugs that showed up only on specific DSP 
compilers. A hard to trace bug was that nesting of 
loops for more than four levels resulted in incorrect 
code. Another hard to trace compiler bug, which 
caused the code to break, happened while changing a 
loop counter inside a loop, in addition to changing it 
in the loop header. In order to resolve these bugs, 
appropriate workarounds were applied. 
 Another problem encountered is the very long 
time it takes to profile the code on different DSPs. 
This might take days or weeks even for short image 
sequences, so we’ve collected as much profiling data 
as was feasible in the students’ limited time-table. 
QCIF (176x144) and CIF (352x288) Carphone, 
Forman and Vectra sequences were used with a 
frame rate of 30 frames/sec. Only the first frame in 
each sequence was an I-frame and the rest (usually 
few dozens of frames) were P-frames. 
 Profiling results of the non-optimized code 
showed for all DSPs that memory access is very 
inefficient and takes a large portion of the total 
running time. For example, on the StarCore, 
memory initialization, using the ANSI C routine 
malloc(), took 50% of the decoder’s time. The 
profiling results for other DSPs were not very 
different. These results are explained by the fact that 
the reference code is very inefficient and by the fact 
that the use of up to five previous reference frames 
for motion prediction in H.264/AVC incurs large 
memory requirements. 
 With this profiling in mind, some code-wide 
optimizations were performed. The highest compiler 
optimization level was used and memory 
initialization and access were greatly optimized by, 
e.g., changing dynamic memory allocations to static 
ones, removing unnecessary duplications of 
intermediate results to temporary memory buffers, 
avoiding unnecessary memory zeroing, and using 
the DSP’s DMA (Direct Memory Access) controller. 
These code-wide optimizations had great impact on 
the performance. For example, the DM642 decoder 
ran 29% faster after changing most of the dynamic 
memory allocations to static ones. On the same 
code, moving from the lowest compiler optimization 
level to a higher one incurred additional speedup of 
38%. 
 A second phase of optimizations involved local 
optimizations. An example of such an optimization 

is for the decoder’s inverse transform function. The 
function that performs an inverse transform on a 
given block made 16 accesses to the block pixels. 
Moving the block from the slow external memory to 
the faster internal memory and making some 
rearrangement in the function’s code resulted in a 
speedup of 80% for this function on the DM642. 
 Another example of local optimization is in the 
code that checks whether motion vectors point 
outside frame boundaries. In the non-optimized 
code, every pixel is examined whether it is inside or 
outside of the frame boundaries. This was replaced 
by checking if the block is out of the frame 
boundaries and only if so, making the check for each 
specific pixel. This optimization, although quite 
simple, gave a significant speed improvement, 
especially for the StarCore implementation since this 
DSP has no branch prediction, and hence its 
performance is sensitive to conditional statements. 
 Fig. 2 shows the time distribution among 
different parts of the DM642 decoder for the non-
optimized and optimized codes. The parts of the 
decoder that were optimized more extensively take a 
smaller percentage of the total time in the optimized 
code, compared to the non-optimized code. In both 
cases, image interpolation (reconstruction of the 
image based on motion compensation and intra 
prediction) takes most of the time and takes a larger 
time share than in all benchmark scores described in 
[4]-[7]. This is explained by the fact that DSPs have 
smaller amount of fast internal memory comparing 
to GPPs and therefore are very sensitive to the non-
sequential memory access performed by image 
interpolation.  
 

 
Fig. 2. Time breakdown of H.264/AVC non-
optimized and optimized decoder on DM642 DSP. 
 
 Table 2 summarizes the decoder time breakdown 
for the non-optimized and the optimized code after 
both code-wide and local optimizations. The results 
are given in QCIF frames/sec. 
 Even though the BDTI benchmark showed quite 
different performance for the different DSPs, Table 
2 indicates that all three of them had a similar 
decoding speed for the non-optimized code.  For the 
optimized code, the performance is very 
optimization-specific but better performance was 
achieved on the DM642 than for the StarCore. This 
is because the DM642 was easier to use, so better 



optimizations were possible for the same amount of 
work.  
 
Table 2. Decoder performce on different DSPs2. 
Results are given in QCIF frames/sec. 

  
 Looking for more optimizations, two main 
inefficiencies were detected in the optimized code: 
1. Memory access is still inefficient. It does not 
exploit the hardware to its limits and causes many 
memory stalls while accessing the slow external 
memory. 2. The JVT code is very inefficient and this 
inefficiency is not concentrated in few major 
bottlenecks but is distributed all over the code.  
 In addition to the profiling results in Table 2, a 
theoretical simulation was performed for the 
StarCore decoder. This simulation calculated the 
performance while neglecting external memory 
stalls. The result was 58.7 QCIF frames/sec. This 
simulation shows the theoretical limit of optimizing 
external memory access with the current code on 
this hardware. 
 
 
5. CONCLUSION 
 
 In this study, three pairs of senior undergraduate 
students have implemented an H.264/AVC decoder 
on different high-end DSPs, using a baseline version 
of the JVT reference code. A comparison of the 
three implementations showed similar performance 
for a non-optimized version of the code. On all 
DSPs, the first-to-handle bottlenecks were the same. 
In addition, second-to-handle optimizations were 
located based on the specific hardware architecture 
of every DSP. Ease of use was best for the DM642, 
so it was possible to achieve better results with this 
DSP. 
 The optimized code is still far from real-time 
performance. This is partly due to the students’ 
limited time for optimizing the code, and is mainly 
due to the fact that the reference code is very 
inefficient and has not been designed with a 
constrained system in mind. It seems like a realistic 
implementation should start from scratch, or from a 
much more efficient code, since the reference code 
had almost been squeezed to its limits in this study. 
 Currently, a similar work is performed in our lab 
for an H.264/AVC encoder. Until now, similar 
memory and other inefficiencies to the ones in the 
decoder were detected, so the same code-wide 
optimizations and some local optimizations are 

                                                 
2 No profiling results for the Blackfin optimized decoder were 
available at the time of writing this paper. 
 

being performed. The profiling results indicate that 
motion estimation and mode decision take most of 
the encoder’s time (55% of the total encoder time for 
one platform). The maximum possible frame rate is 
currently two orders of magnitude slower than for 
the decoder. However, profiling results show that a 
large speedup could be achieved by using sub-
optimal motion estimation and rate-control 
algorithms and by other algorithmic improvements. 
Future work in this direction is currently performed 
in our lab as well as by others, and is expected to 
improve the encoder’s time performance 
substantially. 
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