
2012 IEEE 27-th Convention of Electrical and Electronics Engineers in Israel


Abstract—In this paper we examine and improve a new

approach for change detection (introduced in [1]) which is based
on the appearance and disappearance of 3D line segments as seen
in a new image. These 3D line segments are estimated from a set
of learning images taken from arbitrary viewpoints and under
arbitrary light conditions in an unsupervised manner.

The main advantage of the proposed method lies in the fact
that the change detection is performed by comparing line
segments, and not surfaces or gray levels. Computing 3D surfaces
in an image can be computationally intensive, and other methods
such as image subtraction or cross-correlation are sensitive to
lighting conditions and changes in viewpoints. Moreover, most
man-made objects such as buildings, cars, and even cities viewed
from above consist mainly of straight lines, and therefore this
method is highly applicable for such structures.

The proposed algorithm first focuses on the reconstruction of a
set of 3D line segments forming a certain 3D scene using a set of
2D line segments obtained from the learning images in an
unsupervised manner, without any prior knowledge on the
cameras' positions or relative distance. In the change detection
stage, we use the reconstructed 3D scene of line segments to check
if changes, such as appearance or disappearance of objects, have
occurred in a given test image. This test image can be taken from
arbitrary viewpoint and under arbitrary lighting conditions. Our
change detection algorithm not only distinguishes between the
states of "changed" and "not-changed" line segments, it also
classifies the "changed" line segments as appeared - objects that
entered the scene in the test image, and disappeared - objects that
left the 3D scene reconstructed from the lines of the learning
images.

I. INTRODUCTION

In most change detection problems, the goal is to successfully
reconstruct a 3D scene using given learning images, and then
decide if a significant change has taken place based on a test
image. The common approach to such problems is to estimate the 3D
model of the scene using the associated BRDF1 and then make a
decision based on the knowledge we have on the viewing position
and lighting conditions of the image. If there is a significant
change in the image compared to the estimated model we
decide that a change has occurred.

The estimation of the 3D model is usually done in an unsupervised

1 Bidirectional Reflectance Distribution Function

manner from the learning images. Note that in this new approach,
we do not require the learning images to be taken from the same
viewpoint and in fact they can be taken from arbitrary viewpoints. A
good example for this can be pictures of an urban scene taken by a
passing satellite. Each image can be taken from an arbitrary different
location and viewpoint. Another example is of cars in a parking lot
captured by different surveillance cameras. The majority of examples
in this paper will come from the latter scenario. It is important to
emphasize that we deliberately do not restrict ourselves to the case of
buildings, which have long and relatively easy to detect straight lines,
but rather focus on the case of cars, which mainly consist of short
lines or curves.

In this paper we examine, generalize and improve a new method
(introduced in [1]) for reconstructing the 3D model and detecting
changes – estimating the scene model based only on straight line
segments. Straight lines appear in almost any man-made objects and
therefore this method is applicable to a variety of scenarios –
buildings, cars, urban areas, etc. The major advantage to this
approach is that working with line segments is computationally less
complicated than working with the full set of pixels and also less
sensitive to changes in lighting conditions and viewpoints. Moreover,
most curves can be decomposed into short straight lines and therefore
this method will be applicable to these cases as well.

II. RELATED WORK

Most earlier work on change detection methods was performed on
images taken from a stationary camera at a known position. This
camera produced a sequence of images of the same scene from the
same viewpoint and the change detection algorithm determined if a
change has occurred based on these images. In those algorithms a 3D
model of the scene was not estimated and the change detection was
based on pixel value (intensity) differences between different images
in the sequence. The main drawback of such methods is their strong
sensitivity to illumination and noise. Prominent examples for such
methods are image differencing and background modeling methods.

Later on, several methods for dealing with the cases of non-
stationary image sequences arose. A great deal of work has been done
in the field of moving object detection in video sequences. These
methods require the images to be taken with short time gaps between
images and small changes in viewpoint. Therefore, they are not
compatible to deal with cases in which the distance between
viewpoints is large and the time between images is long (hours\days).
There also exist several methods that are based on the reconstruction
of 3D surfaces. However, these methods are computationally

Robust and Efficient Change Detection
Algorithm based on 3D Line Segments

Tom Zohar

Signal and Image Processing Lab.
Dept. of Electrical Engineering

Technion, Israel Institute of
Technology

Haifa 32000, Israel
tomzohar@gmail.com

Ido Ariav

Signal and Image Processing Lab.
Dept. of Electrical Engineering

Technion, Israel Institute of
Technology

Haifa 32000, Israel
idoariav@gmail.com

 Meir Bar-Zohar

Signal and Image Processing Lab.
Dept. of Electrical Engineering

Technion, Israel Institute of
Technology

Haifa 32000, Israel
meirb@visionsense.com

1978-1-4673-4681-8/12/$31.00 ©2012 IEEE

2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel

intensive and are sensitive to changes in illumination. They are also
known to perform poorly around object boundaries.

Finally, several change detection algorithm make use of straight
lines in order to detect changes. Such are [2] that make use of 2D line
segments in their algorithm, but their method is specifically designed
for aerial images where the images can be registered using an affine
transformation. Li et al [3] provided a method of detecting urban
changes from a pair of satellite images by identifying changed line
segments over time. Their method does not estimate the 3D geometry
associated with the line segments and takes a pair of satellite (aerial)
images as input where line matching can be done by estimating the
homography between the two images.

Eden and Cooper [1] proposed a solution for the change detection
problem using 3D reconstructed scene based on line segments. We
generalize their solution for the uncalibrated set of cameras case,
without making any prior assumptions on the cameras' positions or
time between images, and improve performance and robustness by
adding a K-Nearest Neighbors (KNN) algorithm to the change
detection decision stage.

III. RECONSTRUCTING THE 3D SCENE FROM LEARNING IMAGES

A. Extracting 2D Line Segments in Learning Images
In order to reconstruct a 3D scene of 3D line segments we first

need to match 2D line segments across all learning images. This
procedure imposes two difficulties that are well known in literature -
efficient extraction of 2D lines in an image and efficient matching of
2D lines across images.

When an algorithm for extracting 2D lines such as Hough
transform is applied on an image, the lines are often fragmented into
small segments that diverge from the original line segments. In this
case, instead of getting one 2D line segment representing a real
straight line, we get several line segments that each represent a part
of that one straight line. This situation causes many problems when
later we try to match each segment to a segment in other images. In
order to try and overcome this difficulty, we divide the learning
image into a number of equally sized blocks before applying edge
detection and line extraction. The idea is that now both the edge
detection algorithm and the line extraction algorithm will work with
local thresholds instead of global thresholds in the entire image. In
this way, blocks that are either rich in details (and straight lines) or
very smooth (almost no lines) will benefit from that change. At the
end of the procedure the line segments from all the blocks are merged
into a single array of lines.

B. Matching 2D Line Segments across Images
Once an array of lines is extracted from each learning image, a

method for efficient and reliable matching is needed. Matching of
line segments across images is known to be a difficult task due to its
exponential complexity in image number. Therefore, our method uses
the geometric constraints of epipolar geometry in order to decrease
that complexity and to get better matching results.

We estimate the Fundamental matrices, , in a supervised
manner for each pair of images and , where . This
is done by manually selecting and matching points in the images,
using the camera’s internal parameters for calibration and using the
Gold Standard method as described in [4]. The projective camera
matrix for image is calculated from a Fundamental matrix ,
for all .

By using the epipolar line constraint on each endpoint of a line
segment in a certain image, we can eliminate all the 2D lines in the
other images that are not a good candidate for matching and therefore
produce optional good candidates for matching. For each line in
image , we calculate the two epipolar lines in image
corresponding to the two line segment endpoints using , and we
search for all line segments that lie inside the area between the two

epipolar lines, in image , where . Since the 2D line
extraction algorithm sometimes yields imperfect lines, and thus
endpoints, we allow some freedom, and lines with endpoints that lie
several pixels away from the epipolar lines are also considered good
candidates.

Then, for each line in image , a match score is calculated for all
good candidates in image and the corresponding line in image
will be that with the highest match score.

Another issue that needs to be considered while matching 2D line
segments is the fact that methods of measuring correspondence
between two line segments that differ in angle as a result of different
point of view in different images, will give problematic results.
Therefore, in order to overcome this issue, before any attempt to
calculate a match score for two line segments, both images are
rectified so that the compared lines are parallel.

IV. 3D RECONSTRUCTION AND ASSEMBLING WIRE-FRAME

MODELS

In order to reconstruct the 3D scene of 3D line segments
represented in the learning images, our method uses only 2D line
segments that have matches across at least learning images, where
 . This way, many of the 2D line segments that were not
extracted correctly (too short, fragmented etc.) are eliminated and do
not take part in the 3D reconstruction. This helps improve the
accuracy and reliability of the reconstructed 3D scene.

The reconstruction procedure of 3D lines is done by estimating the
two points in space, for each 3D line, that corresponds to the line's
endpoints in images. Let be the subset of image
indices in which the 3D line endpoint was projected to and found.
Let the point be the projected 2D endpoint in image , where
 . Due to line extraction errors, the rays back-projected from the
points are skew. This means that there will not be a point which
exactly satisfies , where is the projective camera matrix
for image and , so a least squares solution is estimated.

Once a set of 3D lines, represented by their endpoints, was
obtained from the linear reconstruction algorithm, a non-linear
algorithm is applied in order to minimize the Euclidian distance of
the projected lines to the original 2D lines in all views. Here we use
the assumption that for each 3D line segment, a corresponding set of
2D line segments is available in all views. Each 3D line segment is
represented by two normalized 3D endpoints, therefore represented
by six parameters in 3D space.

In order to solve this minimization problem we use the Nelder-
Mead method and the following cost function as used in [1]

 ∑ () ∑ ()

 (1)

where L is the linearly reconstructed 3D line, is the improved
3D line segment of , is the corresponding 2D line segment in
image , is the projection of L to image as an infinite line, and
is the projection of L to image as a finite line segment.
 () is the distance metric between an infinite line and a line

segment and is computed as seen in the following formula

 () √

| |∑ () (2)

where is the perpendicular distance of a point to an infinite 2D
line. The line segment is divided to points and an average of the
point to line distances is calculated.
 () is the distance metric between two line segments. It is

computed in the following manner

 () √

| |∑ () √

| | ∑ () (3)

2

where is the minimum distance between a point and a line
segment. Both line segments and are divided into points and
 and an average of the point-to-line-segment distances is calculated
for both lines.
 appearing in Eq. (1) is used to control the convergence of the

local search algorithm. is selected to be a positive number close to
zero (). In this way, at first the algorithm tries to
converge to the correct infinite line and after that the second part in
the cost function (succeeded by) becomes more dominate and
search for the optimal endpoints for the 3D line segment. Example of
the improvement of the non-linear algorithm is shown in Figure 1.

In the case of a scene of cars in a parking lot, after the 3D
reconstruction, the models of the cars were assembled from
individual lines and there were still some errors due to degeneracies
of some lines due to their 3D orientation with respect to the cameras’
viewpoint. This usually occurs when a 3D line segment and the
camera center lie on the same plane. In addition, since a certain line
in one picture can have a different length from its correspondent line
in some other image due to line extraction imperfections, additional
constraints are added in order to overcome those errors.

We use the geometrical properties of the cars, having obvious wire
frame outlines, in order to add these constraints. Line endpoints that
qualify a distance criterion to a different line endpoint in 3D, as well
as a distance criterion in all three learning images, can be assumed to
be originated from two attached lines in the original scene, having a
mutual endpoint. We use a pair-wise checking algorithm, and define
two radios thresholds – for 3D space and for 2D space for all line
segment endpoints. Since small errors in the 2D line segment
extractions can lead to large error in 3D space, we choose a larger
threshold for 3D space with respect to the scene, than the threshold
for 2D space with respect to the scene. We do not use any prior
information, assumptions or model for the structure of the cars, but
solely depend on the described criterions. Using an iterative
algorithm, endpoints are joined together until there are no such points
that satisfy the criterions.

Each wire-frame model is formed as an undirected graph
 () where the set of edges represent 3D line segments and the
vertices represent their endpoints. Instead of minimizing the objective
function for each line segment separately, here we minimize an
objective function for all line edges in the wire-frame graph model.
The cost function for wire-frame minimization problem is the
following formula also used in [1]

 ∑ (∑ (

)
 ∑ (

)
) (4)

where is the number of vertices in a wire-frame model and is
the line in image associated with edge in graph ().
 , are as defined in Eq. (2) and Eq. (3).

As in the non-linear reconstruction, we also use here the Nelder-
Mead optimization algorithm to find the vertices that minimize the
cost function, constraining together sets of line segments and solving
this optimization algorithm for every set that hold the closeness
constraints.

Fig. 1. (A) The 3D reconstruction of two cars after using linear

reconstruction only. (B) The same reconstruction after applying the
non-linear algorithm. Notice the improvement of the reconstructed
lines marked by a red arrow.

V. CHANGE DETECTION

A. The Concept of the Proposed Algorithm
Our change detection algorithm is based on the appearance and

disappearance of line segments throughout an image sequence. In our
change detection problem, given a new test image the algorithm must
decide whether a significant new object has appeared in the region or
whether an object in the region has left based on the 3D scene
reconstructed from the line segments from the learning images as in
section III. The output of this algorithm is a visual one that assists the
viewer by marking the 2D lines in the test image in different colors
according to changed or unchanged state.

The test image can be taken from an arbitrary viewpoint, different
from all viewpoints of the learning images. We estimate the 3D scene
which consists only of long and short straight lines, since estimating
the complete 3D surface under varying illumination conditions and in
the existence of specular highlights is often impractical. For man-
made objects and for general 3D curves, straight line approximations
are usually appropriate and effective. Our method detects changes by
interpreting reconstructed 3D line segments and 2D line segments
detected in learning and test images.

Our change detection method is composed of two procedures that
eventually assign a state to each 2D line extracted in the test image
(the image) and for each 3D line in the reconstructed scene.
The possible states for the 2D lines are "not-changed" or "changed",
when "changed" means that this line does not appear in the 3D scene
– therefore it's a new line. The possible states for the 3D lines are also
"not-changed" and "changed", when this time "changed" means that
the 3D line does not appear in the new image and therefore the line
belongs to an object that left the scene.

B. Change Detection Tests for 2D Line Segments

Apply Test
T1

Mark as
“not-

changed”

Apply Test
T2

Mark as
“not-

changed”

Mark as
“changed

(new)”

T1<t1

T1>t1
Pass

Fail

2D lines
of test

Fig. 2. Tests T1 and T2 applied to determine the state of each 2D

line in the new test image

Once a new test image is given, all 2D line segments in that image
are extracted in the same manner as described in section III.A. In
order to determine the state of each 2D line extracted in the test
image, we use two statistical test T1 and T2 and the procedure that
appears in Figure 2 and used in [1].

First we apply test T1 for every 2D line segment extracted from
the test image. This test is designed to check how well a 2D line in
the test image fits the reconstructed 3D scene. If for a specific 2D line
in the test image exists a close enough projected 2D line from the 3D
scene then this line is not new – it existed also in the learning images
or else it wouldn't have appeared in the 3D reconstruction. If,
however, such close enough projection does not exist then this means
the line does not appear in the 3D scene and therefore it could belong
to a new object that appeared in the test image.

In order to find the closest projected 2D line we used Eq. (3)
where here is the 2D line segment in the test image and is the
projected 2D line segment. After calculating () for all
projected lines, if the distance of the closest projection is less than a
 threshold, the algorithm marks the state of this 2D line as "not-
changed". If the distance is greater than a threshold, we apply T2
test for that line.

3

A demonstration of test T1 can be seen in Figure 3. In this
example the lines that were marked as "not-changed" (red lines) are
indeed only the ones that are relatively close to the projections from
the 3D scene (green lines). The rest of the 2D lines are marked as
"changed" (blue lines) and indeed we can see that they do not appear
in the reconstructed 3D scene of line segments (not close to any of
the green lines).

After applying test T1 for every 2D line extracted in the test image
we turn to apply test T2 if necessary. T2 test is applied to all the 2D
lines in the test image that were not marked as "not-changed" by test
T1. Since not all the 2D lines extracted in the learning images took
part in the reconstruction of the 3D scene (only those 2D lines that
had a good match across all learning images), there could also be 2D
lines in the test image that do not appear in the 3D scene but do
appear in the learning images, and therefore should be marked as
"not-changed". Since T1 is not able to check such cases, we apply
T2.

Fig. 3. Results of test T1.

In T2 we look for the matching 2D line in learning image which
camera's center is closest to the camera’s center of the test image. For
every 2D line in image image we calculate the two epipolar lines
mapped in the test image by the fundamental matrix between the test
image and image . If a line segment in the test image with endpoints
 and is found, such that endpoint ’s Euclidean distance to one of
the epipolar line is smaller than threshold and endpoint ’s
Euclidean distance to the other epipolar line is smaller than threshold
 , and the offset between the 2D location of the two lines is smaller
than threshold , the line is marked as “not-changed”.

After applying tests T1 and T2 each 2D line in the test image was
classified as "not-changed" and "changed", where "changed" in this
case means that the line belongs to a new object that entered the
scene.

C. Change Detection Test for 3D Lines

Apply Test
T3

Mark as
“not-changed”

Mark as
“changed

(disappeared)”

T3<t3

T3>t3

3D lines of
reconstructed

scene

Fig. 4. Test T3 applied to determine the "state" of each 3D line

Test T3, as shown in Figure 4 and also used in [1], is applied on
the 3D lines comprising the reconstructed scene from section IV in
order to discover if an object has left the scene in the new test image.
For each 3D line in the reconstructed scene we check if there exists a

close enough 2D line in the test image. If such 2D line exists it means
that the object did not leave the scene and that 3D line is marked as
"not-changed". If such 2D line does not exist it means that the object
has left the scene and this line is marked as "changed".

In order to find if a close enough 2D line exists in the test image,
we use the projective camera matrix of the test image and project the
3D line to the test image. Then we use Eq. (3) to calculate the
distance of the projected 3D line to all 2D lines in the test image. If
the closest distance is lower than a threshold the 3D line is marked
as "not-changed". If the minimal distance is greater than threshold
then the state of this 3D line is marked as "changed" (disappeared).
This procedure is performed for all 3D lines in the reconstructed
scene.

D. Improving Results with KNN
As described earlier, each of the tests T1, T2 and T3 works with a

user defined threshold (, , and accordingly). It is obvious
that in the vast majority of the cases one cannot find thresholds ,
 , and such that the change detection procedure will have no
clutter (lines that were marked as "changed" when in fact they are not
and vice versa).

Therefore, after applying the tests T1, T2 and T3 we also use the
KNN algorithm to reduce this clutter. Here we use the assumption
that after test T1, T2 and T3 most of the lines received the correct
state and therefore if we will apply the KNN algorithm line with
wrong states will receive the correct one.

In majority of the cases the lines that get the wrong state label are
the ones that are marked "changed" when in fact they are not
changed. This is due to the fact that there are more lines extracted in
the test image than lines that appear in the 3D scene. Therefore, we
only apply the KNN algorithm to lines that were marked "changed"
by the previous tests. For each 2D line in the test image and 3D line
in the reconstructed scene, that is marked as "changed", we find the
closest lines to that line (is odd) using 2D and 3D distance
metrics respectively. We give the line the state of the majority of

closest lines (⌊ ⌋). We find that in our test images the range of

between 9-15 yields the best results.

VI. EXPERIMENTAL RESULTS

We will now present the results of our method on a learning
sequence of three images (), two different test images, and
using lines matched in three images (). The new test images
were taken from an arbitrary viewpoint (different from all the
viewpoints of the learning images) and not in the same time of day,
meaning different lighting conditions. We experimented with two test
images – one with an object that left the scene and one with a new
object that entered the scene.

Figure 5 shows the results for the test image in which an object has
left the scene. Tests T1 and T2 correctly identified the new car that
entered the scene and all the cars that existed in the learning images
as well. In fact, the new car only entered the scene because of the
rotation in viewpoint between the learning set and the test image and
not because it actually moved into the scene. However, our method is
not meant to distinguish between such cases and the identification is
correct. Moreover, we can see that after applying tests T1 and T2
there is still some clutter on the left side of the image, where some of
the lines were wrongly marked as "changed (new)". After applying
the KNN algorithm most of this clutter was fixed (except for one
line).

Figure 6 shows the results for the test image in which a new object
has entered the scene. Tests T1 and T2 correctly identified both new
cars that entered the scene and all the cars that existed in the learning
images as well. The lower new car is in fact a new car that moved
into the scene. As shown in Figure 6, our algorithm does not

state of 2D lines in image n+1 after T1 test

4

distinguish between the two cars and marks them both as "changed
(new)" correctly.

Moreover, after applying tests T1 and T2 there is still some clutter
on the left side of the image, where some of the lines were wrongly
marked as "changed (new)". After we applied the KNN algorithm
most of this clutter was fixed (except for one line).

In Figure 7 it can be seen that test T3 correctly identified the
newly entered car as "not-changed", where clutter (marked by
arrows) is being dealt with using the KNN phase.

Fig. 5. Experimental results for a test image with a car leaving

the scene. (A) Test Image (B) Ground truth for test image (C) Results
after T1 and T2 tests (D) Results after KNN improvement.

Fig. 6. Experimental results for a test image with a car entering

the scene. (A) Test Image (B) Ground truth for test image (C) Results
after T1 and T2 tests (D) Results after KNN improvement.

Fig. 7. Results of T3 and KNN for the car that entered the scene,

Blue lines – “changed (new)”,Red lines – “not changed”.(A) After
T3 test (B) KNN improved results, corrected lines marked by arrows.

VII. CONCLUSION

In this paper we presented a method for change detection based on
3D line segments. This method is robust and can be applied to images
taken from arbitrary viewing directions, at different times and under
varying illumination conditions, and to a variety of scenes. Moreover,
this method does not require any prior knowledge on cameras'
positions or relative distances.

Our method not only detects changes that occurred in a given test
image, it also distinguishes between changes that are caused by new
objects that entered the scene and changes that are caused by objects
that left the scene. Our method has been shown to detect changes
with high accuracy, on two change detection experiments. Those
experiments indicate that our algorithm is capable of efficiently
matching and accurately reconstructing small and large line
segments, and detecting changes (and their types) by interpreting 2D
and 3D line segments. Our 3D line segment reconstruction algorithm,
which uses the geometric constraints imposed by the scene in both
2D and 3D improve the accuracy of existing individual 3D line
segment reconstruction techniques.

REFERENCES

[1] I. Eden, D. B. Cooper, “Using 3D line segments for robust and
efficient change detection from multiple noisy images”, ECCV
part IV, 2008.

[2] N. C. Rowe, L. L. Grewe, “Change detection for linear features
in aerial photographs using edge-finding”, IEEE Transactions on
Geoscience and Remote Sensing 39(7), pp. 1608–1612, 2001.

[3] W. Li, X. Li, Y. Wu, Z. Hu, “A novel framework for urban
change detection using VHR satellite images”, ICPR, pp. 312–
315, 2006.

[4] R. Hartly, A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd Edition, Cambridge University Press, 2003.

[5] C. Baillard, C. Schmid, A. Zisserman, A. Fitzgibbon,
“Automatic line matching and 3D Reconstruction of Buildings
from Multiple Views”, ISPRS pp. 69-80, 1999.

[6] C. Schmid, A. Zisserman, “Automatic Line Matching across
Views”, CVPR, 1997.

[7] D. Scharstein, “Matching Images by Comparing their Gradient
Fields”, Pattern Recognition, Vol. 1, Conference A: Computer
Vision & Image Processing, 1994.

[8] L. Bruzzone, D. F. Prieto, Automatic Analysis of the Difference
image for unsupervised Change Detection, IEEE Transactions
on Geoscience and Remote Sensing 38(3), 1171–1182, 2000.

[9] L. Bruzzone, D. F. Prieto, An adaptive semiparametric and
context-based approach to unsupervised change detection in
multitemporal remote-sensing images. IEEE Transactions on
Image Processing 11(4), pp. 452–466, 2002.

[10] C. Schmid, A. Zisserman, The geometry and matching of lines
and curves over multiple views. International Journal of
Computer Vision 40(3), pp. 199–233, 2000.

[11] C. Stauffer, W. E. L. Grimson, “Adaptive background mixture
models for real-time tracking”, CVPR, pp. 246–252, 1999.

[12] H. Yalcin, M. Hebert, R. T. Collins, M. J. Black, “A flow-based
approach to vehicle detection and background mosaicking in
airborne video”, CVPR, vol. II, pp. 1202, 2005.

[13] T. Pollard, J. L. Mundy, “Change detection in a 3-d world”
CVPR, pp. 1–6, 2007.

[14] A. Broadhurst, T. Drummond, R. Cipolla, “A probabilistic
framework for space carving”, ICCV, pp. 388–393, 2001.

5

