Activity Classification Using Android Phone Sensors

ALON AMSTER & YARDEN ZUCKERMAN
SUPERVISED BY ITAMAR KATZ

Signal and image processing lab, Technion, spring 2014
Motivation

- Reminder of last parking spot
- Medical monitoring
- Automatic actions based on activity
 - Automatically switch to driving mode
Project Goal

I know what you did last summer

Create an Android application that uses the phone’s sensors to determine human activity in real time.
Background

Smartphones

- Processing power
- Sensors
 - Accelerometer
 - Gyroscope (orientation) \[50\text{Hz} \quad 3\text{-axis}\]
Challenges

Algorithmic
- Noisy signal
- Performance
Implementation
- Concurrency
- Battery drain
Preparing for Demo
Raw Data - Accelerometer

Drive

Walk

Stairs
Process Overview

Feature Extraction

Classifier

Prediction

Gyroscope

Accelerometer
Feature Extraction

- average acceleration
- standard deviation
- peak distance
- binned distribution
Feature Extraction

- Stairs
- Walk
- Drive

![Graph showing mean and standard deviation](image)
Classification

- Goal: prior data + feature vector = prediction
- Our classifier: Naïve Bayes
 - Quick
 - Small training set
 - Handles overlapping
Classifiers – Naïve Bayes

- Return most likely class, c, given a feature vector, $f^\hat{r}$.
- Assumption: features are independent.

$$P(c_i|\hat{f}) = P(c_i)P(f^\hat{r}|c_i) = P(c_i) \prod_{j=1}^{n} P(f_j|c_i)$$
Classifiers – Naïve Bayes

Mean: 2.61
Std. dev.: 0.51

\[P(f_j|c_i) \]
Classifiers – Naïve Bayes

\[
P(c_i | f) = P(c_i) \prod_{j=1}^{n} P(f_j | c_i)
\]

classify\((f_1, ..., f_n) = \arg\max_{C = c_i} P(C = c_i) \prod_{j=1}^{n} P(F_j = f_j | C = c_i)\)
Android Implementation

- Used a Machine learning lib called Weka.
- Used services that run in separate threads.
- Asynchronous communication with the UI.
- UI design and implementation takes a lot of time.
We created an application that determine human activity in real time using the phone’s sensors.

Typical accuracy – 94~96%.

Sometimes confuses between stairs and walk.
Future suggestions

- More extensive training set
- More features
- Use more sensors
- Add activities
- Try other classifiers
Demo time