Speech Enhancement for Speech Recognition using Particle Filtering

Students:
Asa Dan & Elad Shimoni

Instructor:
Hadas Benisty
Motivation

ABC!

ABC
Motivation

Improved **Speech Recognition** in noisy environment
Proposed Solution #1

A previous project[1]

General noise filtering, on time domain signals[2]

Proposed Solution #2

- Filtering in features domain\(^1\)
- Based on statistical models for the speech and noise signals

\(^1\) R. Haeb-Umbach and J Schmalenstroeer, “A comparison of particle filtering variants for speech feature enhancement”, Proc. of Interspeech, 2005
Our Proposed Solution

Noisy speech samples → Features Extraction → Features Enhancement → Classification

- Filtering in features domain\(^1\)
 - Bias consideration
 - Smart re-sampling

- Adaption to our Features Enhancement system
- Evaluation using max posterior
Speech Enhancement for Speech Recognition using Particle Filtering

The Features

Noisy speech samples \rightarrow Features Extraction \rightarrow Features Enhancement \rightarrow Classification

SIPL annual event, July 2013
Features Extraction

\[z_1 \in \mathbb{R}^D \]

\[z_2 \]

\[z_k \]

Log-MEL

|FFT|^2 → Mel filterbank → Log()
Features Extraction

Notations:

- z_k - Noisy sample (at frame # k)
- s_k - Clean speech
- x_k - Noise

Resulted Equation:

Assuming additive noise in time domain

$$z_k = s_k + \log(1 + e^{x_k - s_k})$$
speech features:
assumed to be drawn from a **Gaussian Mixture Model (GMM)**.

Noise model:
“environmental noises” ↔ Correlation between frames exist

First order Auto Regressive (AR) Process

\[x_k = A \cdot x_{k-1} + w_k \]
Speech Enhancement for Speech Recognition using Particle Filtering

Enhancement Module

Noisy speech samples → Features Extraction → Features Enhancement → Classification

SIPL annual event, July 2013
Estimation Problem

• **Input:**

Non-linear State System:

\[x_k = A \cdot x_{k-1} + w_k \]

\[z_k = s_k + \log(1 + e^{x_k - s_k}) \]

- \(z_k \) - Noisy sample (at frame # k)
- \(s_k \) - Clean speech
- \(x_k \) - Noise

Aim:

Estimate (track) iteratively: \(\hat{x}_k \) from samples- \(z_{1:k} = (z_1, ..., z_k) \)

Following, derive clean speech (\(s_k \)) estimation

The state system is highly non-linear => Kalman filter won’t work

• **Solution:** Particle Filter (PF)

 Monte Carlo algorithm for sequential estimation
Particle Filter

\[k = k + 1 \]

- **K = 1**
 - **Draw particles**
 - \[x_1^i \sim p(x_1) \]
 - \[x_k^i \sim p(x_k | x_{k-1}^i) \]
 - **Evaluate weights**
 - \[w_k^i = p(z_k | x_k^i) \]
 - **Resample**
 - **Approximate Posterior**

\[
\hat{p}(x_k | z_{1:k}) = \sum_i w_k^i \cdot \delta_{(x_k - x_k^i)}
\]
Speech Enhancement for Speech Recognition using Particle Filtering

Classification Module

Noisy speech samples → Features Extraction → Features Enhancement → Classification

SIPL annual event, July 2013
A Learning system:

Train clusters using K-Means on features

For each word:

• Associate each speech frame with cluster
• Create histogram for occurrences of clusters along each word

*Prof. Koby Crammer, Implemented by Nadav Merlis and Liora Neeman
Speech Enhancement for Speech Recognition using Particle Filtering

Our Main Improvements

Noisy speech samples → Features Extraction → Features Enhancement → Classification

SIPL annual event, July 2013
Improvement #1
Enhanced Speech Recognition system

• Using GMM (instead of simple clustering)
 – Advantages:
 • Introduces covariance
 • Adjusted to the speech model we use in the Particle Filter (see next...)

• Word division:

 increases success rate by at least 5%
Direct approach:

![Diagram of Direct Approach]

Problem: Filter can’t be ideal

Optimal solution:

Choose Gaussians by Max Posterior:

\[
\hat{m}_k = \arg \max_{m_k} \{ p(m_k \mid z_{1:k}) \} = f (p(x_k \mid z_{1:k}))
\]

Gaussian Index at K’th frame

Evaluate using the particle filter results:

\[
\hat{p}(x_k \mid z_{1:k}) = \sum_i w^i_k \cdot \delta(x_k - x^i_k)
\]
• AR model is adjusted to zero mean signals.

• The noise features are generally not zero mean. \(E[X_k] = c \neq 0 \)

Our solution

\[
z_k = s_k + \log(1 + e^{x_k-s_k})
\]

\[
z'_k = z'_k - c, \quad s'_k = s'_k - c, \quad x'_k = x'_k - c
\]

\[
z'_k = s'_k + \log(1 + e^{x'_k-s'_k})
\]

1) Estimate noise mean- \(c \).

2) Decrease from samples- \(z'_k \triangleq z_k - c \)

3) Decrease from the speech Gaussians means- \(\mu'_m \triangleq \mu_m - c \)

4) Increase estimation- \(\hat{s}_k \triangleq \hat{s}'_k + c \)
• Recall that: \(z_k = s_k + \log(1 + e^{x_k - s_k}) \)
 – The noise must be smaller than the noisy speech
• Some of the particles might have zero weights:

\[
\mathbf{w}^i_k = p(z_k | x^i_k) \bigg|_{x^i_k \geq z_k} = 0
\]

• A zero weight particle is not effective
• Reduced number of effective particles => worse estimation!
• Sometimes ALL particles receive zero weight…
Our solution

Sample in available region

\[f(x_{k+1} | x^i_k) \]

- Draw only from green part
- Set initial weight: \[w^{i}_{(initial)} = p(x^i_{k+1} < z_{k+1} | x^i_k) \]
Speech Enhancement for Speech Recognition using Particle Filtering

Results

SIPL annual event, July 2013
• The results are based on cross-validation over the entire database (ISOLET).
• Results show success rate per SNR.
• ‘Clean’ – achieved success rate without noise.
• ‘Noised’ – achieved success rate without using any filter.

Sample results:
AR Adjustment:

- Significant improvement is achieved when decreasing the noise estimated mean
Particles Number:

- Obvious improvement as the particles number increase.
- Note: Computation time is linear in the particles number.
Comparison

- Comparison to alternative- using OMLSA Filter on time domain samples

Tank Noise:

Stationary and slow changing
Comparison

• Comparison to alternative- using OMLSA Filter on time domain samples

Babble Talk Noise:

Stationary and rapidly changing signal
Comparison

- Comparison to alternative- using OMLSA Filter on time domain samples

Laugh Noise:

Not stationary
Speech Enhancement for Speech Recognition using Particle Filtering

Summary

SIPL annual event, July 2013
Summary

• We used two Building Blocks:
 – Speech Recognition system
 – Enhancement in features domain.

• Introduced our improvements:
 – Split histograms
 – Bias reduction
 – Max posterior estimation
 – Improved sampling

• The Results:
 – Great improvement (up to 30%) compared to non-filtered signals
 – Significant improvement (up to 20%) over using the OMLSA filter, especially when the noise doesn’t fit its assumptions
What Could Be Done Next?

• Models improvement:
 – Introduce correlation between speech frames
 – Time Varying AR
 • Continually varying of parameters
 • Different sets of parameters (mainly different bias).

• Improve the speech recognition:
 – Use the inter-frame dependency
Speech Enhancement for Speech Recognition using Particle Filtering

The End

SIPL annual event, July 2013