3D Object Reconstruction using DaVinci DSP

Raja Giryes

Advisors:
Alex Bronstein, Yair Moshe

In association with GIP

Outline

• Background
• Project goal
• 3D reconstruction
• DaVinci platform
• Adapting the algorithm to the DaVinci
• Results
• Conclusion
Background – 3D Scanners

• A 3D scanner acquires an image in which every pixel has 3 coordinates
• Used for:
 – Biometric recognition (face)
 – Medical uses
 – Comparison of 3D surfaces
 – Architecture and civil engineering
 – Virtual reality
 – And more…
Background - 3D Scanning

- Passive scanning
- Active scanning

Laser scanning
3D digital Escan

Time of light scanning
Leica ScanStation 2

Structured light scanning
Cognitens optigo200
Project Goal

• Realtime implementation of 3D object reconstruction using the DaVinci platform
 – Structured light scanning
 – Using one standard camera and one standard projector
 – Low cost solution
Perspective projection

The Draughtsman of the Lute, Albrecht Dürer
Image Reconstruction

• Given 2 cameras
• If we identify a point in both of them we can know its coordinates (if the lines that goes into the camera are not parallel)
structured light method

• Using ‘active’ projector and a camera
• Projector cast light code on the object
• From the projected plane of the projector and the captured images in the camera we can make the reconstruction
Structured Light Method

scanned pictures

full darkness image

full illumination image

Bit 3 bit 6 bit 9
Reconstruction

PPM world to camera

\[X_c = C_c X_w \quad C_c = \alpha \begin{bmatrix} f_x & kf_y & x_c^0 \\ 0 & f_y & y_c^0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_c \\ t_c \end{bmatrix}. \]

PPM world to projector

\[X_p = C_p X_w \quad C_p = \alpha \begin{bmatrix} f_p & 0 & x_p^0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_p \\ t_p \end{bmatrix}. \]

Reconstruction 2

- We have \(T : X_w \to (X_c, X_p) \)
- But wants: \(T^{-1} : (X_c, X_p) \to X_w \)
- We can get that:
 \[x_w = -R^{-1}s \]

- When:
 \[
 \begin{bmatrix}
 x_c c_3 - c_1 \\
 y_c c_3 - c_2 \\
 x_p p_2 - p_1
 \end{bmatrix}
 \]

\(c_i \) is the row \(i \) in the \(C \) matrix and \(p_i \) is row \(i \) in the \(P \) matrix
Previous implementation

- FireWire black and white CCD camera
- computer-controlled DLP projector
- 10 binary stripe images and additional full dark and full illumination images
- Code implemented in C language on PC
- 3 3D images per second
- Reconstruction using highly optimized Pentium IV code takes 280ms
DaVinci platform

- 2 Cores:
 - ARM9
 - C64x+ DSP

- Memory
 - On-Chip L1/SRAM - 112KB DSP, 40 KB ARM
 - On-Chip L2/SRAM – 64KB DSP

- TI’s solution for Video processing.

- contains large set of compatible software
DaVinci xDM
Adapting to the DaVinci

• Floating point to fixed point
 – Changing output format to homogenous coordinates
 – Fine-tuned scaling of all the values
 – Changing filter sizes for efficient division
 – Changing functions to look-up-tables
 –

• 1 core to 2 cores
 – Using TI’s xDM standard and VISA interface for inter-core communication
 – ARM connects to peripherals and feeds the DSP
 – DSP makes the reconstruction and output the results back to the ARM
Reconstruction Results

Fixed point version

floating point version

RMS = 0.0271
Non-optimized Time Performance

- Reconstruction takes 2.5 sec
What’s next

• Adding the camera and the projector and controlling them using the ARM
 – In progress
• Using the DMA controller for more efficient use of memory
• More code optimization
• Adding the calibration part
Thank you
Active Stereo techniques

- Gray level multiplexed
- Color multiplexed
- Space multiplexed
- Time multiplexed (we use this)
Calibration

- Known world coordinates
- Building C_c and C_p
- The calibration object:
Calibration 2

\[(x_c)_k = C_c(x_w)_k\]
\[(x_p)_k = C_p(x_w)_k,\]

• Solving

• No accurate solution due to finite precision

• Instead we will solve:

\[C_c = \text{argmin} \sum_{k=1}^{N} \|C_c(x_w)_k - (x_c)_k\|_2^2 \quad \text{s.t.} \quad C_c \in \text{PPM}\]
\[C_p = \text{argmin} \sum_{k=1}^{N} \|C_p(x_w)_k - (x_p)_k\|_2^2 \quad \text{s.t.} \quad C_p \in \text{PPM}.\]

• But actually we are interested in \(T^{-1}\) error:

\[T = \text{argmin} \sum_{k=1}^{N} \|T^{-1}(x_c, x_p)_k - (x_w)_k\|_2^2 \quad \text{s.t.} \quad C_c, C_p \in \text{textPPM}.\]
Technical details

<table>
<thead>
<tr>
<th></th>
<th>C64x+</th>
<th>ARM9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak MMACS</td>
<td></td>
<td>4752</td>
</tr>
<tr>
<td>Freq</td>
<td>594</td>
<td>297</td>
</tr>
<tr>
<td>Memory on chip (KB)</td>
<td>16 (ROM)</td>
<td>112 (L1/SRAM)</td>
</tr>
<tr>
<td></td>
<td>40 (L1/SRAM)</td>
<td>64 (L2/SRAM)</td>
</tr>
</tbody>
</table>