Lens Motor Noise Reduction for Digital Cameras

Students: Avihay Barazany Royi Levy
Supervisor: Kuti Avargel
In Association with: Zoran, Haifa

Spring 2008
Digital still cameras are widely used for video and audio recordings. When activating the zoom lens-motor during these recordings, the noise generated by the motor may be recorded by the camera's microphone. This noise may be extremely annoying and significantly degrade the perceived quality and intelligibility of the desired signal.
Introduction – cont.

Speech + Motor noise Spectrum
Problem Formulation

Let $x(n), d^s(n), d^t(n)$ denote the speech signal, background stationary noise, and zoom motor (non-stationary) noise, respectively.

Let $y(n) = x(n) + d^s(n) + d^t(n)$ be the microphone signal.

Main goal: to derive an estimator $\hat{x}(n)$ for the clean speech signal.
Possible Solutions

- To solve this problem, many digital-cameras manufacturers disable the option of activating the lens motor during audio recordings.

- Adaptive solution – Add a reference microphone and implement an adaptive algorithm for cancelling the motor noise in real-time.

- Spectral enhancement – Using spectral enhancement techniques for estimating the motor noise spectrum and enhancing the speech signal.
Spectral Enhancement Techniques

- The spectral enhancement approach is operated on the time-frequency domain.

- Let the observed signal be: \(y(n) = x(n) + d(n) \)

- The goal is to estimate the spectral coefficient of the speech signal.

- Let \(X_{lk} \) be the short time Fourier transform (STFT) of \(x(n) \), i.e.,

\[
X_{lk} = \sum_{m} w(lL - m)x(m)e^{-j\frac{2\pi km}{N}}
\]
Spectral Enhancement Techniques – cont.

• The desired estimate of \hat{X}_{lk} is: $\hat{X}_{lk} = G_{lk} \cdot Y_{lk}$

where the gain function G_{lk} is achieved by minimizing a cost-function: $\arg \min_{G_{lk}} E \left\{ d \left(X_{lk}, \hat{X}_{lk} \right) \right\}$

• There are different ways to measure the distortion function. The commonly used distortion functions are: $d \left(X_{lk}, \hat{X}_{lk} \right) = \left| X_{lk} \right|^2 - \left| \hat{X}_{lk} \right|^2$ or

$$d \left(X_{lk}, \hat{X}_{lk} \right) = \left(\log \left| X_{lk} \right| - \log \left| \hat{X}_{lk} \right| \right)^2$$
• The disadvantage of the above mentioned algorithms, is their difficulty to handle with highly non-stationary noises.
Proposed Algorithm

• The algorithm is based on paper:

• Since the problem consists of 2 different types of noises, the definition of the observed signal is:

 \[y(n) = x(n) + d^s(n) + d^t(n) \]

• And \(X_{lk}, Y_{lk}, D^s_{lk}, D^t_{lk} \) are the STFT of \(x(n), y(n), d^s(n), d^t(n) \) accordingly.
Proposed Algorithm – cont.

- Since the motor noise not always present, we define the following 4 hypothesis:

\[H_{1s}^{lk} : Y_{lk} = X_{lk} + D_{lk}^s \]
\[H_{1t}^{lk} : Y_{lk} = X_{lk} + D_{lk}^s + D_{lk}^t \]
\[H_{0s}^{lk} : Y_{lk} = D_{lk}^s \]
\[H_{0t}^{lk} : Y_{lk} = D_{lk}^s + D_{lk}^t \]

\[H_1^{lk} : \text{speech is more dominant than noise.} \]
\[H_0^{lk} : \text{noise is more dominant than speech.} \]
Proposed Algorithm – cont.

- Let \(\eta_{j}^{lk}, j \in \{0,1\} \) denote the detector decision in the time-frequency bin \((l,k)\):
 - \(\eta_{0}^{lk} \) – transient is a noise component
 - \(\eta_{1}^{lk} \) – transient is a speech component

- Let \(C_{10}, C_{01} \) denote the cost of false-alarm / miss-detections, respectively.

- The algorithm assumes an indicator signal for the motor noise in the time frame \((l)\).
Let $A_{lk} = |X_{lk}|$, $R_{lk} = |Y_{lk}|$.

The criterion for the estimation of the speech signal under the decision η_j^{lk}:

$$\hat{A}_{lk} = \arg \min_{\hat{A}} \left\{ C_{1j} p \left(H_{1s}^{lk} \cup H_{1t}^{lk} | \eta_j^{lk}, Y_{lk} \right) \right.$$

$$\times E \left[d \left(X_{lk}, \hat{A} \right) | Y_{lk}, H_{1s}^{lk} \cup H_{1t}^{lk} \right]$$

$$\left. + C_{0j} p \left(H_{0s}^{lk} \cup H_{0t}^{lk} | \eta_j^{lk}, Y_{lk} \right) d \left(G_{\min R_{lk}}, \hat{A} \right) \right\}$$

where $d(x, y) = \left(\log |x| - \log |y| \right)^2$.

Estimation Criteria
Proposed Gain Function – cont.

Based on above definitions, the gain function is defined:

\[\hat{A}_{lk} = G_{\eta_j}(\xi_{lk}, \gamma_{lk}) Y_{lk} \]

where

\[G_{\eta_j}(\xi_{lk}, \gamma_{lk}) = G_{\min}^{1-a} G_{LSA}(\xi_{lk}, \gamma_{lk})^a \]

\[\gamma_{lk} = \frac{|Y_{lk}|^2}{\lambda_{s, lk} + \lambda_{t, lk}} \quad : \text{a-posteriori SNR} \]

\[\xi_{lk} = \frac{\lambda_{x, lk}}{\lambda_{s, lk} + \lambda_{t, lk}} \quad : \text{a-priori SNR} \]

When no motor noise exists (indicator=0), we will use the conventional OMLSA:

\[a = P(H^l_{1k}) \]
Block Scheme

\[\hat{x}(n) \]

\[D^s_{lk} \]

\[D^t_{lk} \]

\[X_{lk} \]

\[Y_{lk} \]

\[\hat{X}_{lk} \]

\[\text{gain func. computation} \]

\[G_{\eta_j, lk} \]

\[\text{ISTFT} \]
Block Scheme

\[Y_{lk} \rightarrow MCRA \rightarrow \hat{\lambda}_{ds} \]

\[\rightarrow Speech \ variance \ estimate \rightarrow \hat{\lambda}_{x} \]

\[\rightarrow Motor \ Noise \ Estimate \rightarrow \hat{\lambda}_{dt} \]

\[\rightarrow Probability \ Estimator \rightarrow P(H_1) \]

\[\rightarrow G_{min} \ computation \rightarrow G_{\eta_j, lk} \]
Experimental Results

Parameters Setup:

- Several SNR’s of motor noise and speech were experimented.
- For each recording several G_f values were considered.
- Different parameter sets were tried out until the optimized ones were found.
- The performance of the proposed approach was compared to those of the conventional OMLSA.
Full Zoom SNR=8dB, Male

Input Signal

OMLSA Only

Gf=-15dB

Gf=-20dB
Full Zoom SNR=10dB, Female

Input Signal

OMLSA Only

Gf=-15dB

Gf=-25dB
2 parts Zoom SNR=15dB, Female
2 parts Zoom SNR=10dB, Male

Input Signal

Gf=-15dB

Gf=-25dB
3 parts Zoom SNR=15dB, Male

Input Signal

Gf=-15dB

Gf=-25dB
Full Zoom Real Recording, Male

Input Signal

Gf=-15dB

Gf=-25dB
2 parts Zoom Real Recording, Female

Input Signal

Gf=-15dB

Gf=-20dB
Summary

• An algorithm for suppressing lens motor noise has been introduced.

• An optimal estimator, is derived, while assuming some indicator for the motor-noise presence in the time domain.

• A-priori motor noise spectrum estimate is acquired.

• A substantial suppression of the motor noise is achieved, without degrading the perceived quality of the desired signal.

• The proposed algorithm is computationally efficient.
Acknowledgments

• The Signal & Image processing lab for technical support during the entire work process.

• The Control & Robotics lab for assistance with assembling of the camera module together with an I/O control card.

• For all the guidance and academic support by Kuti Avgel.
References

Motor Noise Estimation

• The a-priori estimation for the motor noise is achieved using an average of early acquired recordings λ_0.

• The algorithm updates the initial estimation according to pre-determined regions. The result is the desired $\hat{\lambda}_t$:

$$
\tilde{H}_0 : \hat{\lambda}_t(l, k) = \alpha \lambda_0(l, k) + (1 - \alpha) \left\{ \beta \hat{\lambda}_t(l-1, k) + (1 - \beta) \left[|Y(l, k)|^2 - \hat{\lambda}_s(l, k) \right] \right\}
$$

$$
\tilde{H}_1 : \hat{\lambda}_t(l, k) = \alpha \lambda_0(l, k) + (1 - \alpha) \hat{\lambda}_t(l-1, k)
$$

• The noise is classified by the criteria: Motor noise level higher than speech level(\tilde{H}_0).
Region classification:

- Method of classification:
- Frequencies that are out of speech band [\(>4\) KHz], are assumed to be in \(\hat{H}_0\).
- High amplitude harmonies in the motor noise estimation are classified as \(\hat{H}_0\) as well.
- High amplitude harmonies are determined by an empiric threshold.
- The rest of the spectrum is classified as \(\hat{H}_1\).
Speech Spectral Variance

- In general the speech spectral estimation is calculated by subtracting the motor noise estimation and the background noise estimation from the observed signal.

\[
\hat{\lambda}_{x, lk} = \max \left\{ \alpha G_{\text{LSA}}^2 \left(\hat{\xi}_{l-1, k} , \gamma_{l-1, k} \right) \left| Y_{l-1, k} \right|^2 + (1 - \alpha) \left(\left| Y_{l, k} \right|^2 - \hat{\lambda}_s - \hat{\lambda}_t \right), \lambda_{\min} \right\}
\]
Noise Spectral Estimation

- Using the MCRA algorithm the noise spectrum is estimated. Let $\hat{\lambda}_{s,lk}$ be the noise spectrum estimation.

- Let p'_{lk} denote the conditional speech presence probability, therefore the update equation for $\hat{\lambda}_{s,lk}$ is:

$$
\hat{\lambda}_s(l+1,k) = \tilde{\alpha}_d(l,k) \hat{\lambda}_s(l,k) + [1 - \tilde{\alpha}_d(l,k)] |Y(l,k)|^2
$$

where $\tilde{\alpha}_d(l,k) = \alpha_d + (1 - \alpha_d) p'(l,k)$.

- Let $S_r(l,k) = S(l,k) / S_{\min}(l,k)$ denote the ratio between the local energy of the noisy signal and its derived minimum.

- The decision rule is: $S_r(l,k) > \delta_{\tilde{H}_1}$, δ threshold value.
In order to suppress the noise (stat. & transients) when speech is absence, minimizing the next equation yields the solution above:

$$\arg \min_{G_{\text{min}}} \left\{ E\left[G_{\text{min}} \left(\lambda_{s,lk} + \lambda_{t,lk} \right) - G_f \lambda_{s,lk} \right] \right\}$$

Let G_{min} denote the constant attenuation under speech absence:

$$G_{\text{min}} = G_f \frac{\lambda_{s,lk}}{\lambda_{s,lk} + \lambda_{t,lk}}$$
Let \(P(H_1) = \left\{ 1 + \frac{\hat{q}_{lk}}{1 - \hat{q}_{lk}} (1 + \xi_{lk} \exp(-\nu_{lk})) \right\}^{-1} \)

\(\hat{q}(l,k) = 1 - P_{local}(l,k)P_{global}(l,k)P_{frame}(l) \)

Where \(\hat{q}_{lk} \) is the estimator for the a-priori signal absence probability.

\(\hat{q}_{lk} \) is larger if either previous frames or recent neighboring frequency bins do not contain speech.