Tracking people using video images and active contours

Instructor: Oleg Kuybeda
Students: Nadav Granot, Zohar Tal

Objective
Tracking people using video images.

- **Input**: A video sequence taken from a standing camera.

- **Output**: Detection and tracking of people that are within the frame of the camera, in the video sequence. Their approximated contour will be drawn on the output image.
Example: Tracking one person

Proposed tracker

Leeds tracker

Tracker flow

Legend

- Image data
- Spline data
- Data
- Algorithm blocks
Splines

Suppose we have a set of points, and we want to calculate a curve between them:

One option is obvious – the linear:

1. \[P(x) = P_i(x) \]

\[x_i < x < x_{i+1} \quad i = 0,1,..,k-1 \]

2. \[P_i^{(j)}(x) = P_{i+1}^{(j)}(x) \]

\[j = 0,1,..,r-1 \]

Commonly used parameters:
- \(m \) – order of the polynoms \(P_i \)
- \(r \) – number of derivatives
- \(k \) – number of intervals in the curve

But, we can add more dimensions and more restrictions, by changing (2) into a set of equations.

Contour representation using splines

- A multi dimensional function can be represented using spline theory, by creating splines coordination wise.
- There is a restriction – The sampling axis should be the same for all coordinates.
Example: A real contour

Spline fitting

- Old spline
- Sampled points of old spline
- Old spline with normals
- Old spline with new control points, new spline with new control points
Project spline onto principle subspace

PCA database

<table>
<thead>
<tr>
<th>Mean</th>
<th>1st eigen vector</th>
<th>2nd eigen vector</th>
<th>3rd eigen vector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\lambda = 4190 \quad \lambda = 1310 \quad \lambda = 1070 \]

Effect of PCA filtering

Original | Projected

Simulation analysis

- Example 1 – influence of the number of PCA components on the tracking

1 PCA component

6 PCA components

2 PCA components
Simulation analysis

- Example 2 – Tracking more than 1 person

Simulation analysis

- Example 3 – Tracking a person in a mixed environment
Simulation analysis

- Example 3 – Tracking a person in a mixed environment

Future development

- Technical improvements
- Behavior recognition layer
 - Security
 - Marketing
 - Traffic analysis
 - Non-Human objects
The End

Motion detection

- Differentiate
- Threshold
- Label

Remark: In this project, background estimation is not considered an issue
Region merge and filtering

- Help us “not to lose our heads”
- Remove some clutter
 - Remove very small regions
 - Calculate bounding box for each remaining region
 - Merge regions, using equation (1)
 - Remove regions that are smaller than a human

\[
D_{n,r_2} = \frac{dx + dy}{\max(W_{r_1},H_{r_1}) + \max(W_{r_2},H_{r_2}) + 1}
\]

Dynamic model

- Model is implemented only for motion, not for contour propagation
- Head position is taken as the reference point
- A more complex model can be implemented for better robustness

Splines before and after dynamic model
Solid line – Previous frame spline
Dashed line – Predicted splines
Match and initialize splines

- Match detected regions with tracked people
- Add new detected people
- Remove lost trackings

Splines - definition

\[
\begin{align*}
(1) & \quad P(x) = P_i(x) \quad x_i < x < x_{i+1} \quad i = 0, 1, \ldots, k - 1 \\
(2) & \quad P_{i}^{(j)}(x_j) = P_{i+1}^{(j)}(x_j) \quad j = 0, 1, \ldots, r - 1 \\
\end{align*}
\]

A spline is a Piecewise Polynomial, given by (1) and (2), in which \(r=m\) (simple spline) or \(r<m\) (regular spline).

Commonly used splines:

- Linear Spline: \(r=m=1\)
- Quadratic Spline: \(r=m=2\)
- Cubic Spline: \(r=m=3\)
Representation of splines

- In the traditional way, the position of the set of points (also known as breakpoints), and the polynomial coefficients for each piece are the set of parameters that should be calculated.

- One wants to represent the spline in a method that addresses 2 main demands:
 - Computationally simple.
 - A local change in the set of points will make only a local change in the spline, leaving the rest of it unchanged.

B-Splines - Definition

- A recursive definition:
 \[
 N_{i,0}(x) = \begin{cases}
 1 & x_i \leq x \leq x_{i+1} \\
 0 & \text{else}
 \end{cases}
 \]

 \[
 N_{i,m}(x) = \frac{x-x_i}{x_{i+m}-x_i} \cdot N_{i,m-1}(x) + \frac{x_{i+m+1}-x}{x_{i+m+1}-x_{i+1}} \cdot N_{i+1,m-1}(x)
 \]

- The family of curves \(N_{i,m}(x) \) can be used to represent a spline as a linear combination of the curves in the family (the base curves):

 \[
P(x) = \sum_{i=-m}^{k-1} a_i \cdot N_{i,m}(x)
 \]
A little more about base curves

Recursive build of a quadratic base curve

Comments:
- Easy representation:
 \[P(x) = \sum_{i=0}^{k-1} a_i \cdot N_{i,m}(x) \]
- A change in one point would require recalculation of only \(m+1 \) intervals, while the rest of the spline is unchanged.

Representation dimensionality

- A typical human contour would require about 45 intervals, depending on distance from camera and amount of contour details required.
- This means that a B-Spline representation of the contour would require about twice as much coefficients (a spline for each dimension).
- Since human contours are very similar to one another, the dimension of the vector used for contour representation can be largely reduced, using Principal Component Analysis - PCA.
- The result is a representation vector of about 5 coefficients.
- By reducing the number of coefficients to 5, we do component filtering to the fitted splines, thus allowing better clutter handling.
Building the PCA database

- In a controlled environment (white background, dark clothes), record all human gestures.
- Use this video to acquire the shadow of a person in all positions.
- Sample the contour in \(n \) points, and use them for splines calculation.
- Use spline coefficients as input to the PCA algorithm.

PCA Calculation

- Given an observation matrix \(M \), in which every column is an observation and every row is a component, construct the covariance matrix by:

\[
\Lambda = \frac{1}{n} MM^T \quad M : [m,n]
\]

- Find eigen values \(\lambda_i \) of the covariance matrix, by solving:

\[
|\Lambda - I \lambda_i| = 0
\]

- Find eigen vectors \(v_i \) of the covariance matrix, by solving:

\[
(\Lambda - I \lambda_i) \cdot v_i = 0
\]
Relevant articles and work

- Nils T. Seibel, *Design and implementation of people tracking algorithms for visual surveillance applications*, University of Reading (2003).

- Christoph Kiefer, *Qualitative and Quantitative Evaluation of the Reading People Tracker*, Swiss Federal Institute of Technology (2004).