People Metering Using Mobile Devices

Yehoraz Kasher Annual EE Projects Contest

Students: Oded Yeruhami
Yuval Bahat

Supervisor: Rafi Steinberg

June 7th, 2010
Outline

• People metering
• People metering using mobile devices
• Algorithm description
• Our innovations
• Conclusion
Rating Measurement

- Fast growing advertising market
- Based on rating data

"People Meter" - Drawbacks:
 - Designated hardware
 - Small control group
 - Hard to know who is watching what
People Metering Using Mobile Devices

Query Fingerprint Creation

Reference Fingerprint Creation

Matching

Matched Channel / No Match
People Metering Using Mobile Devices

- As suggested by MobileRL
 - Overcomes all "People Meter" drawbacks
 - Carried everywhere
 - Can also be used to monitor radio, video, music etc.

But -

Privacy must be kept
Based on "Waveprint" algorithm by
(Baluja & Covell, 2006)

System Layout

Fingerprint Creation

Fingerprints

Matching

Extracting significant data

Matched channel / No match
Wavelet Transform

Good for pointing out local data in images

Haar Wavelet Transform

Keeping strongest coefficients

Sparse Binary Vector

Min Hash Vector (p elements)

Sub-Fingerprint #1

Sub-Fingerprint #2

Sub-Fingerprint #3

Spectrogram

Fingerprint Creation

Fingerprint

Spectrogram creation

Spectrogram

Time

Frequency
Fingerprint Matching

Candidate Sub-Fingerprint Selection

Matching

Best Match
"Waveprint" Performance

System performance -

As described in the paper

However our problem is more difficult…

• Matching criterion is required
• Recordings in a noisy environment
Threshold Criterion - Metrics

Precision & Recall (per match grade threshold)

<table>
<thead>
<tr>
<th>Metric</th>
<th>True Identification</th>
<th>All Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recall</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datasets by

Two query types:

- Good Quality recordings
- Bad Quality recordings
Original Algorithm Results

Recall = 65%
Precision = 78%

Recall = 13%
Precision = 96%

Recall = 65%
Precision = 78%

Bad recordings
Good recordings
Problem:

Bad recordings - very low success rate

Let's have a closer look...
Success Rates Problem

• Main problem appears in “bad recordings”
Proposed Solution

Biasing the wavelet picking

Strongest wavelets picking histogram

- Frequency dimension
- Time dimension

Percent

DC Freq. Time Time/Freq.
After Weighted Wavelet Picking

Good Recordings

Recall=90%
Precision=97%

Recall=65%
Precision=78%
After Weighted Wavelet Picking
Bad Recordings

Recall=13%
Precision=96%

Recall=49%
Precision=99%
Matching Criterion

Recurrence check
Demanding consistent matches in a sequence of queries

Advantages
• Increases success rates
• Overcomes sporadic noise

\[P_{true} = 93\% \quad P_{false} = 0.9\% \]

For bad recordings!

But…

Increases size of sent data
Reducing Signature Size – 1st Solution

Google’s problem: Database Size
Our problem: Sent Data Size

Adapting system parameters to our problem

Sent query size $\times 0.1$

Reducing Signature Size – 2nd Solution

Golomb-Rice coding (Golomb & Solomon, 1966)

Cumulative Distribution Function

~20\% Compression
Conclusion

Implemented a people metering system using mobile devices

– Personal

– Carried everywhere

– Not only TV
Conclusion

Based on "Waveprint" algorithm by Google

Innovation #1
- Biasing the wavelet picking
 - Match rates $\times 3$

Innovation #2
- Recurrence check
 - Match rates $\uparrow \uparrow \uparrow$
Conclusion

Innovation #3
Reducing sent fingerprint size

Innovation #4
Compressing sent data

Single signature size:

13.24 KB → 1.32 KB → 1.06 KB

Sent data size × ~0.08
Conclusion

• System is suitable for commercial use

 For example:

 \[P_{\text{true}} = 90\%, \quad P_{\text{false}} = 0.9\%, \quad E[\text{sent size}] = \sim 9\text{KB} \]

• Supplied to MobileRL

• A paper in the writing
Acknowledgments

- Rafi Steinberg
- SIPL staff
 - Yair Moshe
 - Nimrod Peleg
- MobileRL
 - Aron Weiss, CTO

Thank You!