Non-Local Means Denoising Using a Content-Based Search Region and Dissimilarity Kernel

Hila Berkovich, David Malah, and Meir Barzohar

ISPA 2013
8th Int'l Symposium on Image and Signal Processing and Analysis

04-Sep-13
Outline

- Introduction
 - Image Denoising
 - Standard Non-Local Means (NLM)
- Proposed NLM Modifications
- Experimental Results
- Conclusions & Future Work
Introduction: Image Denoising

- Image denoising is used to find the best estimate of the original image given its noisy version.
- Common noise model:

\[Y = X + N, \quad N \sim \mathcal{N}(0, \sigma^2_n) \]

\(Y \) = noisy image
\(X \) = original image (unknown)
\(N \) = additive white noise

It is assumed that \(X \) and \(N \) are independent

- Patch-based denoising methods have drawn much attention.
Standard Non-Local Means (NLM)

- Introduced by Buades et. al (2005).
- Exploits image redundancy.
- **Pixel restoration**: Weighted average of all gray values within the defined search region S_i.

\[
\hat{X}_i = \sum_{j \in S_i} w_{i,j} Y_i
\]
Standard Non-Local Means (NLM)

Weights Definition

- The weights are based on similarity between pixel neighborhoods

\[w_{i,k} = \frac{1}{W_i} \exp \left(-\frac{d_p(i,k)}{h^2} \right), \quad k \in S_i, \quad i \text{ is the POI} \]

\[d_p(i,k) = \frac{1}{p^2} \left\| Y(A_i) - Y(A_k) \right\|_2^2 \]

- \(d_p(i,k) \): dissimilarity measure between neighborhoods of pixels \(i \) and \(k \)
- \(S_i \): rectangular search region of size \(M \times M \)
- \(A_i \): similarity patch of size \(p \times p \)
- \(h \): weight smoothing parameter
- \(W_i \): normalization factor \(\left(\sum_{k \in S_i} w_{i,k} \right) \)
The Parameter h

- The NLM algorithm is sensitive to the selection of the parameter h

$$w_{i,j} = \frac{1}{W_i} e^{-\frac{d_p(i,j)}{h^2}}, \ j \in S_i$$

- It is usually set to be proportional to σ_n.
- In addition, simulations suggest that h should match local structure:

- There are NLM modifications that suggest to use an adaptive h, matched to local structure (e.g., Duval et al. 2010, Dinesh et al. 2009)

High computational complexity
Alternative for Using a Local h – Adaptive Search Region

- **Method**: use an anisotropic **adaptive** region, which includes only pixels with similar neighborhoods to that of the POI.

- **Prior art**:
 - Gradient-based classification (Mahmoudi et al. 2005) – sensitive to noise
 - Similarity patch correlation (Dinesh et al. 2009) – a threshold is required
 - Local Polynomial Approximation combined with the Intersection of Confidence Intervals (LPA-ICI) (Sun et al. 2009) – complex and enforces contiguity of search region

creates wide edge \(\rightarrow\) causes over-smoothing
Proposed Modification I: Adaptive Model-Based Search Region

Assumptions:

$$\forall k \in S_i^S \setminus \{i\} : X(A_i) = X(A_k) \rightarrow Y(A_i) - Y(A_k) = N(A_i) - N(A_k)$$

$$\forall j \in S_i^D : X(A_i) = C_j + X(A_j) \rightarrow Y(A_i) - Y(A_j) = C_j + N(A_i) - N(A_j)$$
Adaptive Model-Based Search Region

Distribution of Dissimilarity Measure

- A Compared patch included in S_i^S:

$\forall k \in S_i^S \setminus \{i\}: \frac{d_p(i, k)}{2\sigma_n^2} = \frac{1}{p^2} \left\| Y(A_i) - Y(A_k) \right\|_2^2 = \frac{1}{p^2} \sum_{m \in A_i} \sum_{l \in A_k} \left(\frac{N_m - N_l}{\sqrt{2\sigma_n}} \right)^2 \sim \chi^2_{p^2}$

$E \left[\frac{d_p(i, k)}{2\sigma_n^2} \right] = 1, \quad Var \left[\frac{d_p(i, k)}{2\sigma_n^2} \right] = \frac{2}{p^2}$

- A Compared patch included in S_i^D:

$\forall j \in S_i^D: \frac{d_p(i, j)}{2\sigma_n^2} = \frac{1}{p^2} \left\| Y(A_i) - Y(A_j) \right\|_2^2 = \frac{1}{p^2} \sum_{m \in A_i} \sum_{l \in A_k} \left(\frac{C_j + N_m - N_l}{\sqrt{2\sigma_n}} \right)^2 \sim \chi^2_{p^2} \left(\lambda_j \right)$

$\lambda_j = f(C_j)$
For $p^2 \gg 1$, the Chi-Square distribution converges to a Normal distribution.

For $p^2 = 25$
Adaptive Model-Based Search Region

Difference Between Distributions

\[\forall k \in S_i^S \setminus \{i\}: \quad \frac{d_p(i, k)}{2\sigma_n^2} \sim \mathcal{N}\left(1, \frac{2}{p^2}\right) \]

\[\forall j \in S_i^D: \quad \frac{d_p(i, j)}{2\sigma_n^2} \sim \mathcal{N}\left(1 + \frac{\lambda_j}{p^2}, \frac{2}{p^2} + \frac{4\lambda_j}{p^4}\right) \]

- The difference between the distributions of the two sets can serve as a classification measure.
- Since \(\lambda_j \) is unknown, we use a one-side hypothesis based on the dissimilarity variance:

Pixels included in \(S_i^S \) are characterized by a variance \(\leq 2/p^2 \)
Adaptive Model-Based Search Region

Classification Via Accumulated Variance

Stop accumulation once

$$Var\left\{ \frac{d_p(i,k)}{2\sigma^2_n} \right\}_{k \in S_i} > \frac{2}{p^2}$$

Compute Accumulated Variance by starting with the first 2 elements and adding one element at a time

Sort $$\left\{ \frac{d_p(i,k)}{2\sigma^2_n} \right\}_{k \in S_i}$$ in an ascending order

$$\forall k \in S_i : \frac{d_p(i,k)}{2\sigma^2_n}$$

$$S^S_i$$ $$S^P_i$$

$$d_{Th} = 6$$

Accumulated Variance

Sorted normalized $$d_p$$

$$\frac{2}{p^2}$$

$$0$$ $$2$$ $$4$$ $$6$$ $$8$$ $$10$$ $$12$$ $$14$$ $$16$$

$$(0, 2, 4, 6, 8, 10, 12, 14, 16)$$

$$(0, 5, 10, 15)$$
Examples of Adaptive Search Region of Different Local Structures
NLM with Patch–Kernel

- 2 types of patch (dissimilarity)-kernels are used frequently in NLM denoising:

\[
d_p(i,k) = \frac{1}{p^2} \| Y(A_i) - Y(A_k) \|_{2,a}^2 = \frac{1}{p^2} \sum_{m \in A_i, l \in A_k} \alpha_m (N_m - N_l)^2
\]

Uniform patch-kernel

Box patch-kernel

- Smooth regions
- Textured regions / Edges
Proposed Modification II: Patch–Kernel Type Adaptation

- The Adaptive Model-Based Search Region output provides an S_i^S set per pixel.
Cluster Cardinality Map Data

- Classify the data of the normalized cardinality map using K-Means with K=2.
- The classification results in 2 centroids:
 - Large centroid value
 - Weights are computed based on Uniform patch-kernel
 - Small centroid value
 - Weights are computed based on Box patch-kernel
Patch–Kernel Type Adaptation (Cont’d)

- Cardinality map clustered data \(|S_i^S| \)
 * For \(\sigma_n = 20 \)
Experimental Results

- **Uniform NLM vs. Adaptive NLM**

<table>
<thead>
<tr>
<th></th>
<th>Uniform</th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR [dB]</td>
<td>24.78</td>
<td>25.62</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.689</td>
<td>0.75</td>
</tr>
</tbody>
</table>

*For $\sigma_n = 20$

$p = 5$

$M = 11$
Experimental Results (Cont’d)

- Uniform NLM vs. Adaptive NLM

<table>
<thead>
<tr>
<th></th>
<th>Uniform</th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR [dB]</td>
<td>24.78</td>
<td>25.62</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.689</td>
<td>0.75</td>
</tr>
</tbody>
</table>

* For $\sigma_n = 20$
* $p = 5$
* $M = 11$
Experimental Results (Cont’d)

- Box NLM vs. Adaptive NLM

<table>
<thead>
<tr>
<th></th>
<th>Box</th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR [dB]</td>
<td>25.54</td>
<td>25.62</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.74</td>
<td>0.75</td>
</tr>
</tbody>
</table>

* For $\sigma_n = 20$

 $p = 5$

 $M = 11$
Experimental Results (Cont’d)

- **Box NLM vs. Adaptive NLM**

<table>
<thead>
<tr>
<th></th>
<th>Box</th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR [dB]</td>
<td>25.54</td>
<td>25.62</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.74</td>
<td>0.75</td>
</tr>
</tbody>
</table>

* For $\sigma_n = 20$
Experimental Results (Cont’d)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lena</td>
<td>20</td>
<td>30.11/0.87</td>
<td>30.27/0.86</td>
<td>30.48/0.88</td>
</tr>
<tr>
<td>Baboon</td>
<td>20</td>
<td>24.78/0.69</td>
<td>25.54/0.74</td>
<td>25.62/0.75</td>
</tr>
<tr>
<td>Barbara</td>
<td>20</td>
<td>29.11/0.87</td>
<td>29.19/0.87</td>
<td>29.33/0.88</td>
</tr>
<tr>
<td>Lena</td>
<td>30</td>
<td>28.03/0.81</td>
<td>28.03/0.78</td>
<td>28.32/0.82</td>
</tr>
<tr>
<td>Pepper</td>
<td>30</td>
<td>28.03/0.83</td>
<td>28.06/0.81</td>
<td>28.39/0.84</td>
</tr>
</tbody>
</table>
Conclusion

- Two modifications of the NLM algorithm were introduced:
 - **Model-based** adaptive search region
 - Parameter-free
 - not restricted to be contiguous
 - **Content-based** patch-kernel type
 - matched to local structure → smooth regions are less granular while texture and edges are preserved.
Future Work

• Consider correlation between dissimilarity values due to:
 - Overlap between similarity patches.
 - Patches in the same search region are compared to the same reference patch.

• Apply the suggested modifications on images characterized by Poisson noise.

In Progress
Non-Local Means Denoising Using a Content-Based Search Region and Dissimilarity Kernel