Robust Automatic Detector And Feature Extractor For Dolphin Whistles

Joel Bud and Guy Shkury
Supervised by Dr. Roee Diamant

OCEANS 2019, Marseille, June 2019
Agenda

• Background
• Previous works
• Goals
• Main Challenges
• Our solution - ECV
• Results discussion
• Conclusions
Background

- Two endangered species
- Underwater desert
- Human interaction
- Whistles (and Clicks)

Short-beaked common dolphin, Delphinus delphis; http://marinebio.org

Common Bottlenose Dolphins, Tursiops truncatus; Yotam Zuriel, Ashdod, Israel
Previous Work

• Semi-automatic detection, manual feature extraction
 [Song et al. 2015]

• Naïve Scenarios to increase SNR:
 hydrophone arrays
 suction cups on dolphins
 [Oswald et al. 2003, Erbs et al. 2017]
 [Esfahanian et al. 2013]

• Consensus of features needed for classification
 [Esfahanian et al. 2014]
 [Oswald et al. 2003]
 [Erbs et al. 2017]
Model and Assumptions

- Single hydrophone
- Surveying vessel
- Dolphin whistle and Additive noise:
 - i.i.d Gaussian noise
 - Noise transient
 - Low frequency artificial noise

\[
y(t) = d(t) + n(t), \\
n(t) = n_g(t) + n_h(t) + n_u(t)
\]
Dolphin Whistles

Bottlenose dolphin

Common dolphin
Goals

- Automatic detection
- Automatic feature extraction

* Dolphin whistle recordings in the presentation were provided by Yotam Zuriel, Morris Kahn Marine Research Station, University of Haifa, Israel
Main Challenges

- Underwater noise
- Keeping it simple and robust
- Contour tracing
- Lack of data sets for the region
Main Challenges

- Underwater noise
- Keeping it simple and robust
- Contour tracing
- Lack of data sets for the region

Believe it or not, there's a whistle here.
ECV - Entropy, Correlation and Viterbi
Entropy Detector

- Dolphin whistles are narrow-banded → reducing entropy
- Adapts to environment entropy level

Entropy – commonly regarded as a measure of disorder
Entropy Detector

- Dolphin whistles are narrow-banded → reducing entropy
- Adapts to environment entropy level

\[P(t, m) = \frac{S(t, m)}{\sum_f S(t, f)} \]

\[H(t) = \sum_{m=1}^{N} P(t, m) \log_2(P(t, m)) \]
Temporal Correlation Detector

- Adjacent time segments ~ stationary
- Accurate whistle start
Temporal Correlation Detector

- Adjacent time segments ~ stationary
- Accurate whistle start
Constrained Viterbi Algorithm

- Most likely sequence of hidden states
- Spectrogram → Emission matrix
- Time space → Observation space
- Frequency bin → Hidden Markov states
- Confidence level
Constrained Viterbi Algorithm

- Most likely sequence of hidden states
- Spectrogram \rightarrow Emission matrix
- Time space \rightarrow Observation space
- Frequency bin \rightarrow Hidden Markov states
- Confidence level
Constrained Viterbi Algorithm

- Markov process

\[P(S_{t+1,f_y} \mid S_{t,f_x}) = P(S_{t+1} \mid S_t, S_{t-1}, S_{t-2} \ldots) \]

States of \(\{\text{time, frequency}\} \)
Constrained Viterbi Algorithm

- Markov process

\[P(S_{t+1,f_y} | S_{t,f_x}) = P(S_{t+1} | S_t, S_{t-1}, S_{t-2} \ldots) \]

\[P(S_{t,f}) = \frac{\hat{x}(t,f)}{\sum_{n=f}^{\kappa} \hat{x}(t,f)} \]

\(\hat{x}(t,f) \) represents spectral matrix

\[P(S_{t+1,f_j} | S_{t,f_i}) = \begin{cases}
1/\kappa & \text{for } i - \kappa/2 < j < i + \kappa/2 \\
0 & \text{o.w}
\end{cases} \]
Constrained Viterbi Algorithm
Illustration of ECV operation
Illustration of ECV operation
Simulation vs Real

Simulated whistle

Real whistle of Bottlenose dolphin

Power/frequency (dB/Hz)
Simulation

SNR = 3 dB

SNR = 0 dB

SNR = -3 dB

Frequency (kHz)

Time (s)

Power/frequency (dB/Hz)
Parameters selection

- Total of 4 system parameters:
 - Correlator
 - Viterbi
 - Viterbi transitions
 - Entropy
- Tradeoff: detection and false alarms

<table>
<thead>
<tr>
<th>Parameter / Error</th>
<th>Mean</th>
<th>STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start time [sec]</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>End time [sec]</td>
<td>0.9</td>
<td>0.07</td>
</tr>
<tr>
<td>Start Frequency [kHz]</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>End Frequency [kHz]</td>
<td>6</td>
<td>4.5</td>
</tr>
<tr>
<td>Max Frequency [kHz]</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>Min Frequency [kHz]</td>
<td>3.2</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Parameters selection

Start time sensitivity

Viterbi transitions – Contour

Confidence in the contour

First filter
PAMGuard
Results

- Compares to PAMGuard
- Feature Accuracy:
 - Accurate start
 - Not as accurate for the rest

<table>
<thead>
<tr>
<th>Evaluation over real tagged whistles</th>
<th>ECV</th>
<th>PAMGUARD + Rocca</th>
</tr>
</thead>
<tbody>
<tr>
<td>True detection [%]</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>False alarms per minute</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature extraction accuracy evaluation over real tagged whistles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter / Error</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Start time [sec]</td>
</tr>
<tr>
<td>End time [sec]</td>
</tr>
<tr>
<td>Start Frequency [kHz]</td>
</tr>
<tr>
<td>End Frequency [kHz]</td>
</tr>
<tr>
<td>Max Frequency [kHz]</td>
</tr>
<tr>
<td>Min Frequency [kHz]</td>
</tr>
</tbody>
</table>
Conclusions

• Robust
• Automatic
• Small number of system parameters
• Easily modified to extract new features
• Potential in non-causal implementation
Conclusions

• Robust – Same parameters for different environments
• Automatic
• Small number of system parameters
• Easily modified to extract new features
• Potential in non-causal implementation
Conclusions

• Robust – Same parameters for different environments
• Automatic – Produces list of spectral features
• Small number of system parameters
• Easily modified to extract new features
• Potential in non-causal implementation
Conclusions

• Robust – Same parameters for different environments
• Automatic – Produces list of spectral features
• Small number of system parameters – Easily configured if needed
• Easily modified to extract new features
• Potential in non-causal implementation
Conclusions

• Robust – Same parameters for different environments
• Automatic – Produces list of spectral features
• Small number of system parameters – Easily configured if needed
• Easily modified to extract new features – Outputs the whistle contour
• Potential in non-causal implementation
Conclusions

- **Robust** – Same parameters for different environments
- **Automatic** – Produces list of spectral features
- **Small number of system parameters** – Easily configured if needed
- **Easily modified to extract new features** – Outputs the whistle contour
- **Potential in non-causal implementation** – Start times have higher accuracy
Robust Automatic Detector And Feature Extractor For Dolphin Whistles

Joel Bud and Guy Shkury
Supervised by Dr. Roee Diamant