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Image Denoising

Probably the most popular and heavily studied problem in image processing
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4 Why is it so popular? Here are fexplanations : R
() It does come up in many applications
(i) Itis the simplest inverse problem, platform for new ideas
(i) Many other problems can be recast as an iterated denoising, and
\_ (Iv) Itis misleadingly simple J‘
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Leading Image Denoising Methods

Are built upon powerful patcivased (local) image models:
A Non-LocalMeans (NLM): seimilarity within natural images

A K-SVD: sparse representation modeling of image patches

A BM3D: combines sparsity prioand non local sel§imilarity

A Kernelregression: offers a local directional filter

A EPLL: exploits a GMM model of the image patches

A ...

4 _ _ )
Today we present way to improve variousuch

state-of-the-art image denoising methods, simgdy applying
the original algorithm aa“blackbox’ severakimes
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Background



Boosting Methods for Denoising

Noisy image
0) In image denoising,
there are two sources

of possible problems:

‘ C Residual noise in the

output image, and
C Residual content in the
method noise

Method Noise
O O

g Boostingof ImageDenoisingAlgorithms 5
ByYanivRomano and Michadilad



Existing Boosting Algorithms

C Twicing[Tukey('77), Charest et al’@6)]

0 6 Qo o)
C TVdenoising usinggregmandistance
[Bregman('67), Osher et al.’(05)]

0 6 B (0 0))

SAlFTalebiet al. (12)] choosesautomatically the local
Improvementmechanism: Diffusion ofwicing

¢ EPLIZoran & Weiss©9), Sulam & Elad14)]
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SOS Boosting

Boosting of Image Denoising Algorithms
SIAM Journal on Imaging Scien@x.5



Strengthen - Operate - Subtract Boosting

C Givenany denoiser how can we improve its performance?

P Denoise )
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Strengthen - Operate - Subtract Boosting

C Givenany denoiser how can we improve its performance?

».» Denoise
+
+

Previous]

Result

SRR

I. Strengthen the signal

Il. Operate the denoiser
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Strengthen - Operate - Subtract Boosting

C Givenany denoiser how can we improve its performance?

?.» Denoise ?.‘

Previous
Result

I. Strengthen the signal
Il. Operate the denoiser

Ill. Subtract the previous estimation from the outcome
SOSormulation: 06 "o 6 ) o
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Strengthen - Operate - Subtract Boosting

C Animprovement isexpected since3 . @& o} 3. ®}

Inthe ideal casewhere6 0, we get
3. o ct3. B}

C Wesuggesttrengthening the underlyingigna)l ratherthan

A Adding/filtering the method noise which tends to converge to
the noisy imageor

A Operating on the denoising output again and agawhich
tends toleadto oversmoothing

C SOS treats both sources of errors created in image denaising
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Image Denoising — A Matrix Formulation

G Observation: Denoising Algorithm
- Non-Linear Part Spatially adaptive -
(decisions/switches) = weighted average

True for NLM, Kernekgression, BMD, kSVD, and many other methods
C We study the convergence of the SOS using only the linear part:
0O P0) n o
C What aboutsparsitybaseddenoising methods:iad & Aharon'06)] ?
We haveshown that in this case that

AN is symmetric and positive definitg, . -
A and_ w T, and_ D, il P w P
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Convergence Study

Theorem: TheSOSonvergesf |[€ 1 || P, which holds
true for kernetbased (Bilateral filter, NLM, Kernel
Regressionjgndsparsitybased methods (VD)

For these denoising algorithms, the SOS
boosting converges to

g (¢ ¢ 1)) QU

C What about the noHinear part and its influence? Mo
this can be found in our paper.
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Generalization

C We introduce two parameters that modify
A Thesteadystate outcome
A Therequirements for convergence (the eigenvalues rgnged
A The rate of convergence

C The parameter’ , affects the steasate outcome:

6 o "o ) "o

C Thesecondparameter,t, controlsthe rate-of-convergence,
without affecting the steadhgtate:

6  tdo "o ) (Pt p)o
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Generalization

C Bydefining theerrorQ @ @, the SOS yields:
'Q (.l_n l‘,'] (.1.11 .|_ p)é) !Q

C We derived a closetbrm expression for the optimal {if) setting
A Given’ . what Largest eigenvalue of the errertransition matri

IS the bestt,
leading to

the fastest
convergenc® This
IS depicted by the
dashed curve
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Graph-Based
Interpretation



Graph Laplacian

C We can refer to the denoising matrix,, as a spatially adaptive
smoothing operator.

C A Graph Laplacian operator for an image can be defined as
fl. € n

The intuition: The Laplacian computes the difference between a
pixel and its neighborhodsl weighted average.

C Theimagecontentis expected to reside along the eigenvectors
corresponding to thesmall eigenvalueef ] , while thenoiseis
spread uniformly over all theigenspace

C What can we do withil ? - Regularize inverse problems!
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Graph Laplacian Regularization

C The regularization can be defined[asioatazt al. (08), Bouglewet al. (09)]
O | ENo o] 7o flo
0]

Seeks for an estimation that ~ While promoting similar
IS close to the noisy version pixels to remain similar

C Another option is to integrate the filter also in the ddidelity term
[Kheradmandand Milanfar ('13)]

0 iéET(é O (6 0) "o flo

Using theadaptive filteras
a weightmatrix
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Graph Laplacian Regularization

C Another natural option is to minimizae following cost function

LA

o 1 Efo Aol "o flo
(0)

Seeks for an estimation that is
close to the denoised version

Its closedform solution is the steadgtate outcome of the SOS

o (¢ "€ /) no (¢ "fl) fo

[ The SO$Boostingacts as a graph Laplacieagularizer ]

C More on this topic can be found in our paper
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Experiments



Results

C We successfully boost several statethe-art denoisingalgorithms:
A K-SVDNLM,BM3D, and EPLL

A Without anymodifications, simply by applying tlegiginal
software as &blackboxX’

C We manually tuned two parameters
A " —signal emphasis factor
0 "o "6 ) "o
A , —noise level, which is an inptd the denoiser
A Since thenoise level of6 "0 is higher than the one of
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Quantitative Comparison

C Average boosting in PSNR* osamages (higher is better):

*03. 2¢ il € uju- 3 W

Noise std

Improved Methods

d

K-SVD

NLM
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Visual Comparison: K-SVD

C Original KSVD results, ¢ v
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Visual Comparison: K-SVD

C SOXK-SVDresults, ¢ v
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Visual Comparison: EPLL

C Original EPLL results, ¢ v

Forman

32.44dB
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Visual Comparison: EPLL

C SOEPLLresults, ¢ v

Forman
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Visual Comparison: All

Noisy image KS3A2() NLN{.02 BRD 31.89 EPLRBQ.89

SOS KSVB1.9) SOS NLKQ56 SOS B3 31.94 SOS EPBILAY
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Visual Comparison: All

SOS KSVB4.4 SOS NLMZ.3 SOS BBD 34.7) SOS EPI134()
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Time to
Conclude



Conclusions

The SOS boosting algorithm is:
V Easy to usewe simply treat thedenoiser'(t) as a“‘blackbox’
V Applicable to a wide range of denoising algoritHg
V Guaranteedo convergefor many leading denoising algorithms
V Has a straightforward stopping criterion
V Actsasan interesting graptiaplaciamregularizer

V Reduces thdéocalglobal gapn patchrbased methods

V Guaranteed to improvetate-of-the-art methods

V Has arautomatic parametessettingsbased on MESURE
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We are Done...

Thank you!

Questions?
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K-SVD Denoising
Matrix Formulation



Sparsity Model — The Basics

C We assume the existence of
a dictionaryAN 1 whose D
columns are thetom signals

C Signals are modeled as spalsear

combinationsof the dictionary atoms g
sy AT

where| issparse meaning that
it is assumedo contain mostlyzeros ) B)

¢ The computation of from @
(or its or its noisy version) is callsdarsecoding

C TheOMPIs a popular sparseoding technique,
especially for low dimensional signals
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K-SVD Image Denoising [ciad ganaron(06)]

Noisy Image Initial Dictionary  yging KSVD
' Go Update the
Dictionary
Denoise ]
each patch
Using OMP
| Al A (
Denoised o~ el ’ n:extracts
combination | | | the Q patch
Patch
of few atoms from o
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K-SVD Image Denoising [ciad ganaron(06)]

Noisy Image Initial Dictionary  ysing KSVD Reconstructed Image

Update the
Dictionary

Denoise L
each patch

Using OMP
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Reducing the
“Local-Global” Gap

Patch-Disagreement as a Way to Improve K-SVD Denoising
ICASSR015



Reaching a Consensus

C It turns out that the SOS boosting reduces theal globalgap,
which is a shortcoming of many patblased methods:

A Local processing of patch¥S the global needn a whole
denoisedresult

C We define the local disagreements by

Disagreement omm Local independent - Globally averaged
patch — denoisedpatch patch

C The disagreements
A Naturally exist since each noisy patcdésnoisedindependently

A Are basedn theintermediateresults
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“Sharing the Disagreement”

C Inspired by thé'Consensus and Sharingroblem from gameheory:

A There are several agents, each one of them ainmaitomizeits
iIndividual cos{i.e.,representingthe noisypatch sparsely)

A These agents affectshared objective term, describirtge
overallgoal(i.e., obtaining the globallgenoisedmage)

C Imitating this concept, we suggest sharing theagreements

Noisy » + » Patchbased ‘ Patch » Est.

patches denoising Avg. Image
* o

* -

Noisy @

image
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Connection to SOS Boosting

C Interestingly, for a fixed filter matri§y “sharing the disagreemeht
and the SOS boosting are equivalent

0 NG o) o
C The connection to the SOS is far from trivial because

A The SOS is blind to the intermediate results (the independent
denoisedpatches, before patclaveraging)

A The intermediate resultare crucial for“sharing the
disagreement approach

The SOS boosting reduces the
localglobal gap
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Guaranteed
improvement?



The General Case jvilantar(12)

C Given anyenoisem ,the- 3 &0 1 ocan be expressed by

P.. . % g o
- 30) lo ol lloQoll U «bd)
A oQM 6[0] 6 ({ &0
A ba® e[f(6 slo)] ., t40H }
C We define theeigendecomposition by
A
A 1: orthogonal matrix, representing tHelenoiserspacé

A :diagonal matrix, containing the eigenvalues
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The General Case [vianfar(12)]

C Setting 0 R°H we get
- 3 00) C P

16> Qe 0 (D)

C Tradeoff._© preducesthe bias butncreasethe variance

C The optimal filter ( - 3 #) 1) is obtained for
W

~
7

- (D 7

which is the Wiener filter, but iequiresknowledge ofo
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MSE of the SOS boosting

C Inthe case of the SOS boosting, the filter can be represented as

i@ @A) A A A

where _ S

C Asaresult, fof 1M we get

S 36 ) (p ,‘,’(p )> & "DO) (p : (‘; )) b (0)

Largerthan1 Smallerthan 1

C Alarge” reduces thevariance o but increases théiasof 0
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Gaining Improvement

C Let us define an improvement function

BC) - 3@ ) - 30

A An improvement is obtained§ (") T

Theorem: Foranydenoisem with_ ——

(suboptimaleigenvalues)p” * such that3 (" *)

Tt

(

\U

The SO8oostingis always able to improve
a suboptimaddenoiser

~

J
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Minimizing the MSE

C We dorit have the true MSE

C But we can estimate it using SUREn (81)]
-3 4A0) O Qo) 6 ¢, 4P, 0)

A Requires the analytical form of the divergenceé@(fo)

C Solution: MonteCarloSUREzRamankt al. (08)]
A Treats thedenoiseras a blacibox

A Estimates the first order difference estimator of the divergenc
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